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ABSTRACT 

Inverted version of exponentiated distributions are found useful as lifetime models. In this paper, we develop maximum 
likelihood estimators and Bayes estimators of unknown parameters of the inverted exponentiated Pareto distribution based on 

upper record values. We derive Bayes estimators of the parameters using importance sampling under symmetric and asymmetric 

loss functions. Credible interval estimation for the parameters is also done.  A prediction for future upper record values is 
proposed based upon non-Bayesian as well as Bayesian approach. Bayes predictive interval estimation is carried out for future 

upper record value.  We assess the validity of the proposed method by using real data and compare the proposed estimators 

based on mean squared error through a Monte Carlo simulation. The results may be of interest especially when only record 
values are stored. 
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RESUMEN 

La versión invertida de distribuciones exponenciadas ha aparecido como útil para modelos  de los tiempos de vida. En este  

paper, desarrollamos estimadores máximo verosímiles y  Bayesianos para los parámetros desconocidos de la distribución  Pareto 
exponenciada invertida basada en los valores mayores de los  records.  Derivamos estimadores de  Bayes de los parámetros 

usando muestreo de importancia bajo funciones de pérdida simétricas y  asimétricas. La estimación creíble de los parámetros 

también se desarrollò. Una  predicción de valores futuros del valor superior de los records es propuesta basándose en los 
enfoques no-Bayesianos y  Bayesianos. La estimación Bayes del intervalo predictivo se desarrolló para  valores futuros del valor 

superior de los records.  La validez del método propuesto es validado usando data real  y comparando el error cuadrático medio 

de los estimadores propuestos a través de simulación de Monte Carlo. Los resultados  pueden ser de interés especialmente 
cuando solo valores de los records se almacenan.    

 

PALABRAS CLAVE: Máxima Verosimilitud, Estimación Bayes, Gamma  Prior, Intervalo Creíble, Predictivo, Simulación 
 

1. INTRODUCTION 

The concept of record values was introduced by Chandler (1952). Two types of record values lower record 

values and upper record values are observed from the data . Observations of the shortest time for 100m runs 

or swimming are called lower records values and observation of long jump , high jump, total rainfall of the 

year greater than the existing respective records, streets-strength life turning data are called upper record 

values . 

Let X1, X2 , …… , Xn  be a sequence of independent identically distributed random variables with cumulative 

distribution function (cdf) F(x).Then the observation Xj is called an upper record value if Xj > 𝑋i for every i<j 

with X1as first upper record value. The time indicates for which upper record values occur are given by the 

record times{U(n),n≥1},where 

 U(n)= max{j │j>U(n-1),Xj>XU(n-1)} ,n>1 with U(1)=1. 

A sequence of upper record values are denoted as XU(1),XU(2),….., XU(n). A number of research workers have 

worked on the problems related to the study of records . 

Arnold et al (1998) considered a likelihood function for estimating unknown parameter based on record 

values. Bask and Balakrishnan (2003) obtained a predictive likelihood function for future record values .The 
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inferential aspects for different distribution based on records have been studied by many authors. Ahmadi and 

Arghami (2003) considered comparison of the fisher information in record values. Chaturvedi and Malhotra 

(2017) made inference for three parameter Burr distribution based on records.  

The Bayesian approach becomes more useful for small sample size if sufficient prior information is available. 

Jaheen (2003) derived Bayesian estimation for the parameters of the Gompertz distribution based on upper 

record values. Madi and Raqab (2004) provided Bayesian interference to predict the future upper record 

values based on the observed upper record values from the Pareto distribution. 

The Pareto distribution named after Viltredo Pareto (1897) is used as a distribution of income. Now a day it 

also becomes widely useful  in actuarial and life testing experiments as a life time model. Davis and 

Feldestein (1979) introduced Pareto distribution as a model for life time data . 

A generalized form of Pareto distribution known as exponentiated Pareto distribution have also been used by 

many authors. Mohmoud et. al (2015) and Kumar (2013) have obtained estimators of parameter of 

exponentiated  Pareto distribution under progressively type-II censored data. Nassar et. al (2018) have 

introduced a new generalization of the exponentiated  Pareto distribution and discussed its application. Many 

authors have used record values for estimating the  parameters of exponentiated Pareto distribution.  Yoon et. 

al (2017) have studies lower record values from exponentiated Pareto distribution. They have used classical as 

well as Bayesian methods of estimation  

Inverted version of exponentiated distributions are also found useful as lifetime models. Hassan and 

Mohamed (2019) have proposed inverted exponentiated Lomax distribution as a new lifetime model. They 

have used censored data to make interference on the parameters of the model. Not much work based on record 

values for inverted version of exponentiated distributions are available. Furthermore, we observed that 

problems of estimation and prediction under both classical and Bayesian approaches for inverted 

exponentiated Pareto  distribution based on upper record values have not been considered. With this 

motivation, we considered classical and Bayesian inference for inverted exponentiated Pareto (IEP) 

distribution based on upper record values. 

We first consider maximum likelihood estimation of the parameters of IEP distribution based on the upper 

record values in Section 2. Furthermore, we consider the Bayesian approach  in Sections 3 to obtain Bayes 

estimates and HPD credible intervals of the parameters of the proposed distribution based on the upper record 

values.  The problem of prediction of future upper records is discussed in Section 4. Real data analysis and 

simulation study are presented in Section 5. Finally, the paper ends with a conclusion in Section 6. 

The probability density function (pdf) and cumulative distribution function (cdf) of IEP distribution are given 

by respectively as, 

𝑓( 𝑥; 𝜃, 𝜆) =
θλ

x2
[1 − (1 +

1

x
)
−𝜆

]
θ−1

(1 +
1

x
)
−(λ+1)

, x > 0 ,θ >, λ >.                                                         (1) 

and  

𝐹( 𝑥; 𝜃, 𝜆) = 1 − [1 − (1 +
1

x
)−𝜆]

𝜃

                                                                                                                  (2) 

 

2. MAXIMUM LIKELIHOOD ESTIMATOR 

  

The point and confidence interval estimation of the parameters of IEP distribution based on upper record 

value are obtained using the method of maximum likelihood. 

Let 𝑥𝑈(1) , 𝑥𝑈(2) , … . , 𝑥𝑈(𝑚)be a sequence of upper record values from IEP distribution. For the sake of 

simplicity, we assume 𝑥𝑈(𝑖) = 𝑥𝑖, i= 1, 2,…., m 

The likelihood function of observed record x̲ is then given by 

𝐿 = 𝐿(θ, λ|𝑥) = ∏ f(xi,
m
i=1 θ, λ)/∏ [1 − F(xi

m−1
i=1 , θ, λ)]                                                                                 (3) 

It follows, from (1), (2) and (3), that 

L = 
θmλm

∏ xi
2m

1
∏ [1 − (1 +

1

xi
)−𝜆]θ−1m

i=1

∏ (1+
1

xi
)−(λ+1)m

i=1

∏ [1−(1+
1

xi

m−1
i=1 )−λ]θ

                                                                                     (4) 

The natural logarithm of the likelihood function in (4) becomes: 

logL =  mlogθ + mlogλ − 2∑ logxi 
m
1 + θlog [1− (1 +

1

xm
)
−λ

] − ∑ log [1 − (1 +
1

xi
)
−λ

− (λ +m
1

1) ∑ logm
1 (1 +

1

xi
)                                                                                                                                          (5) 

Differentiating (5) with respect to θ and λ , we have the likelihood equations for θ and λ as 
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∂logL

∂θ
=

m

θ
+ 𝐴 1(λ, xm) = 0                                                                                                                               (6) 

and 
∂logL

∂θ
=

m

λ
+ θA2(λ, xm) − ∑ A3(λ, xi) − ∑ A4

m
i=1 (xi)

m
i=1 = 0                                                                          (7) 

where, 

A1(λ, xm) = log [1– ( 1 +
1

xm
)−λ] 

A2(λ, xm) = 
( 1+

1

xm
)−λ log  ( 1+

1

xm
)

1–( 1+
1

xm
)−λ

 

A3(λ,xi) =  
( 1+

1

xi
)−λ log  ( 1+

1

xi
)

1–( 1+
1

xi
)−λ

 

A4(λ,xi) = log (1+
1

xi
) 

From equation (6), we can write 

θ = 
−m

A1(λ,xm)
                                                                                                                                                         (8) 

Substituting θ from (8) in equation (7), we get profile likelihood equation of λ as: 
m

λ
 - 
mA2(λ,xm)

A1(λ,xm)
 - ∑ A3

m
1 (λ, xi) - ∑ A4

m
1 (xi)=0 

Therefore, 𝜆̂, mle of λ, can be defined as the solution of the non-linear equation  

h(λ) =  λ                                                                                                                                                            (9) 

where 

 h(λ) = 
m

∑ A4(xi)+∑ A3(λ,xi)+
mA2(λ,xm)

A1(λ,xm)
m
1

m
1

                                                                                                               (10) 

The equation (9) is difficult to solve, so iterative procedure is used. We have use R software to solve the 

equation. 

The asymptotic variance-covariance matrix of MLEs for parameters θ and λ are given by the observed 

information matrix: 

I (θ, λ) = E [−
∂2logL

∂θ∂λ
]                                                                                                                                        (11) 

The exact expectations in the above expressions are very difficult to obtain. Therefore, we use the observed 

asymptotic variance-covariance matrix as: 

[
V(𝜃̂) cov(𝜃̂, 𝜆̂)

cov(𝜃̂, 𝜆̂) V(𝜆̂)
] = [

−
∂2 log L

∂θ2
−
∂2 log L

∂θ∂λ

−
∂2 log L

∂θ∂λ
−
∂2 log L

∂λ2

]

−1

                                                                                         (12) 

with 
∂2 log L

∂θ2
= −

m

θ2
                                                                                                                                                   (13) 

∂2 log L

∂θ∂λ
= A2(λ, xm)                                                                                                                                          (14) 

and 
∂2 log L

∂λ2
= −

m

λ2
− 

θA2
2(λ,xm)

(1+
1

xm
)
−λ + ∑ [

A3
2(λ,xi)

(1+
1

xi
)−λ

m
i=1                                                                                                      (15) 

Under regularity conditions, the asymptotic properties of the MLE method ensure that  

√n(Ψ̂ − Ψ)
d
→N2(0,    𝐼

−1(Ψ))   as n→  ∞ 

where 
d
→  denotes the convergence in distribution. 

Hence, 100(1-α)% confidence interval for θ and λ are given respectively as follows: 

𝜃̂ ± zα/2√V(𝜃̂)           and                𝜆̂ ± zα/2√V(𝜆̂)                                                                                      (16) 

where  zα/2 is the [100(1 − α 2⁄ )]th percentile of standard normal distribution. 

 

3. BAYES ESTIMATION 
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In this section we derive Bayes estimate of the Parameters of IEP Distribution based on upper record values 

under symmetric and asymmetric loss functions namely (i) Squared Error loss function(SELF)  and (ii) Linex 

Loss function(LLF) respectively. 

We assume gamma (a1,b1) and gamma (a2,b2) Priors for parameters θ and λ with respective pdf as, 

π1(θ) =   
e−a1θθb1−1a1

b1

Гb1
,   θ>0 ; a1, b1>0                                                                                                       (17) 

and 

π2(λ) =   
e−a2λλb2−1a2

b2

Гb2
,   λ>0 ;  a2, b2>0                                                                                                      (18) 

Here all the prior parameters a1, b1, a2, and b2 are assumed to be known within their range. 

The Joint Posterior distribution of (θ , λ) is given by, 

π ( θ, λ│ x)  = 
L π1(θ)π2(λ)

∫ ∫ L π1(θ)π2(λ) dλ dθ λθ

                                                                                                               (19) 

Using (4), (17) and (18) the joint posterior distribution of θ and λ reduces to, 

π ( θ, λ│ x)  = 
θm+b1−1 e−θD1  λm+b2−1 e−λD2e−D3

D4
                                                                                             (20) 

where, 

D1 =  a1-A1(λ1, xm) 
D2= a2 + ∑ A4(xi)

m
1  

D3= ∑ log [1 − (1 +
1

xi
)
−λ

]m
1  

D4= 
Г(m+b1)

D1
m+b1

∫  λm+b2−1 e−λD2e−D3
∞

0
dλ 

The  marginal posterior distribution of θ and λ can be obtained respectively as, 

π1( θ│ x)  = ∫ π ( θ, λ│ x)
λ

 dλ 

                  = 
θm+b1−1

D4
∫  λm+b2−1 e−λD2−D3−θD1
∞

0
dλ, 0<θ<∞                                                                        (21) 

and 

π2( λ|x)= ∫ π ( θ, λ│ x)
θ

 dθ 

             = 
   Г(m+b1)

D4 D1
m+b1

  λm+b2−1 e−λD2−D3 ,  0<λ<∞                                                                                           (22)     

The SELF is a symmetric loss function that assigns equal losses to under and over estimation. The Bayes 

estimate under SELF is given by the posterior expectation, 

That is θ̂ = Eπ(θ).                                                                                                                                            (23)               

where π is the marginal posterior distribution of θ. 

However such a restriction may not be practical. In reliability estimation over estimation is more serious than 

under estimation. In such situation we consider an asymmetric loss function. There are many types of 

asymmetric loss functions, but in this paper we consider LINEX asymmetric loss function, introduced by 

Varian(1975). The LLF is expressed as, 

𝐿(𝛿) ∝ exp(𝜐𝛿) − 𝜐𝛿 − 1, 𝜐≠0  where δ= θ̂ – θ  

The sign and magnitude of the parameter 𝜐 represents the direction and degree of symmetry, respectively. 

When 𝜐 is positive, than over estimation is more serious than under estimation. The opposite is true when 𝜐 is 

negative, for 𝜐 =1 the LLF becomes quite asymmetric about zero. For 𝜐 tends to zero the LLF reduces to 

squared error loss function. 

The Bayes estimate of  θ under LLF is given by Zellner (1986) as, 

θ̂=  
−1

𝜐
log[Eπ(e−𝜐θ)],                                                                                                                                        (24) 

provided expectation under marginal posterior distribution(π)  of θ exist. 

From equations (21) and (22), it is clear that Bayes estimate under SELF and LLF cannot be observed in 

closed form. In such situation some other methods are used like Lindley’s approximation, importance 

sampling, numerical integration etc. 

Here we consider importance sampling method to obtain Bayes estimate of parameter θ and λ under SELF 

and LLF. The advantage of this method is that we can easily obtain credible interval for the parameters. 

First we rewrite the joint posterior distribution of θ and λ from (20) as, 

π ( θ, λ│ x)  ∝
θm+b1−1 e−θD1  D1

m+b1

Г(m+b1)

 λm+b2−1 e−λD2  D2
m+b2

Г(m+b2)

e
−∑ log [1−(1+

1
xi
)
−λ

]m
1

 D1
m+b1
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                      =Gθ│λ (m+ b1,  D1)  Gλ (m+ b2,  D2)  W1(θ,λ)                                                             (25) 

whereGθ│λ (m+ b1,  D1)  is a gamma density of θ given λ. Gλ (m+ b2,  D2)   is a gamma density of λ. 

and W1(θ,λ)   is a function of λ and  x defined as, 

W1(θ,λ)  =    
e
−∑ log [1−(1+

1
xi
)
−λ

]m
1

 D1
m+b1

                                                                                                                        (26)       

According to the method given in Raqab and Madi (2005) it is quite easy to get a Bayes estimate of 

parametric function  β = γ(θ, λ),  using the importance sampling scheme as  follows: 

Algorithm 1 

Step 1. Based on the observed sample upper record values {x1, … , xm} generate λ1 from                                                                                     

Gλ (m+ b2,  D2) distribution. 

Step 2. Generate  θ1 from Gθ│λ (m+ b1,  D1)  distribution. 

Step 3. Repeat Steps 1 and 2, N times and obtain (θ1, λ1), ... , (θN, λN). 
Step 4. Based on the values of θ and λ in Step 3 compute the values 

W1(θ1, λ1),W1(θ2, λ2), … . ,W1(θN, λN). 
Step 5. The expected value of γ(θ, λ) under posterior distribution of (θ, λ)  

can be approximated, 

Êh(γ(θ, λ)) = 

1

N
∑ γ(θi,λi)W1(θi,λi)
N
1
1

N
∑ W1(θi,λi)
N
1

                                                                                                          (27) 

Hence we can obtain Bayes estimate of parameter θ and λ under SELF and LLF  using(27) in  (23) and (24). 

Now, we obtain the credible interval of θ using the method described by Kundu and Pradhan (2009). 

The 100 (1 – α)% HPD credible interval for θ will be the interval, 

Rj = (θ̂(
j

N
)
 , θ̂(

j+(1 – α)N

N
)
),    j = 1,2, ... ,[αN]                                                                                                       (28) 

Such that it has the smallest width. 

Where θ̂(α)= {
θ(1)                                        if  α = 0

θ(i)            if ∑ pj <  𝛼 < ∑ pj
i
j=1

i−1
j=1

                                                                                          (29) 

pi= 
W1(θi,λi)

∑ W1(θi,λi)
N
1

  ,                   i=1,2, ... , N                                                                                                         (30) 

And {θ(i)} and {λ(i)} are the observed values of {θi} and {λi} respectively. 

 

4. PREDICTION OF FUTURE UPPER RECORD VALUES 

 

In this section we address the method of predicting the rth upper record values r > m using Non-Bayesian and  

Bayesian approaches. Ahmadi and Doostparast (2006) have considered Bayesian prediction for some life time 

distributions based on record values. Nadar et. al (2013) have predicted future upper record values based on 

the observed record values in the case of Kumaraswamy distribution. 

 

4.1 Non- Bayesian Approach 

 

Suppose that we observed for first m upper record values from the given distribution having pdf  f (x, θ, λ ). 

To predict y = x𝑟 = rth upper record value, r >m, consider the joint predictive likelihood of  y and θ, λ as 

given by Basak and Balakrishnan (2003). 

L( y, θ, λ ; x) = ∏
K (xi ;θ,λ) 

Г(r−m)

m
i=1 [K(y; θ, λ) − K(xm ; θ, λ)]

r−m−1k(y; θ, λ)                                                        (31) 

where K (y; θ, λ) =   - ln[1 – F(y; θ, λ)]                                                                                                            (32) 

and      k(xi ; θ, λ) = 
f (xi ;θ,λ)

1 – F(xi;θ,λ)
                                                                                                                          (33) 

 

Using (1), (2) in (31)  the predictive likelihood function for the IEP distribution is , 

Lp( y, θ, λ ; x) = 
1

Г(r−m)
θr λm+1

1

∏ xi
2m

i=1

∏ [
(1+

1

xi
)
−(λ+1)

1−(1+
1

xi
)
−λ ]

m
i=1 . [ln {

1−(1+
1

xm
)
−λ

1−(1+
1

y
)
}]

r−m−1

× 

[1−(1+
1

y
)
−λ
]

θ−1

(1+
1

y
)
−(λ+1)

y2
,  y >xm > xm−1> ... >x1> 0                                                                                      (34) 
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The log likelihood equation to estimate the parameter θ, λ and y are , 
∂logLp

∂θ
= 
r

θ
 + log [1 − (1 +

1

y
)
−λ

]=0 

∂logLp

∂λ
= 
m+1

λ
 - ∑ [

(1+
1

xi
)
−λ
log(1+

1

xi
)

1−(1+
1

xi
)
−λ ]m

1  -  ∑ log (1 +
1

xi
)m

i=1 + (r-m-1)

[
 
 
 
 
 −(

(1+
1
y)
−λ

1−(1+
1
y)
−λ
)log(1+

1

y
) + (

(1+
1
xm

)
−λ

1−(1+
1
xm

)
−λ
)log(1+

1

xm
)

ln(1−(1+
1

xm
)
−λ
) − ln(1−(1+

1

y
)
−λ
)

]
 
 
 
 
 

 

+ 
(θ−1){(1+

1

y
)
−λ
log(1+

1

y
)}

1−(1+
1

y
)
−λ   -  log (1 +

1

y
) = 0 

and  

∂logLp

∂y
= 
(r−m−1)λ

y2
(1 +

1

y
)
−λ−1

[
1

ln(1−(1+
1

xm
)
−λ
) − ln(1−(1+

1

y
)
−λ
)

] −  
 2

y
   – 

(θ−1)λ  (1+
1

y
)
−λ−1

y2[1−(1+
1

y
)
−λ
]

  +  
(λ+1)

y2(1+
1

y
)
 = 0 

After simplification these equations are 

θ = 
−r

log[1−(1+
1

y
)
−λ
]

                                                                                                                                              (35) 

 

g(λ) = 
m+1

λ
                                                                                                                                                        (36) 

 

when, 

g(λ)= ∑ [
(1+

1

xi
)
−λ

log(1+
1

xi
)

1−(1+
1

xi
)
−λ ]m

1 − 
(θ−1){(1+

1

y
)
−λ
log(1+

1

y
)}

1−(1+
1

y
)
−λ + ∑ log(1 +

1

xi
)m

i=1 + log (1 +
1

y
) - (r − m− 1)

[
 
 
 
 (1+

1
xm

)
−λ

log(1+
1
xm

)

1−(1+
1
xm

)
−λ  − 

(1+
1
y)
−λ

log(1+
1
y)

1−(1+
1
y)
−λ

ln(1−(1+
1

xm
)
−λ
) − ln(1−(1+

1

y
)
−λ
)

]
 
 
 
 

 

and 

2y = 
λ+1

(1+
1

y
)
 + [

(r−m−1) λ(1+
1

y
)
−λ−1

ln(1−(1+
1

xm
)
−λ
) − ln(1−(1+

1

y
)
−λ
)

] −  
(θ−1)λ  (1+

1

y
)
−λ−1

[1−(1+
1

y
)
−λ
]

                                                                  (37)   

 

On replacing θ from (35) in (36) and (37) we have a system of two equations which can easily be solved by 

any numerical method. 

 

4.2 Bayesian Approach 

 

In this section, we consider a prediction of future rth upper record value based on the available first m upper 

record values using Bayesian approach. Let y = xr, r > m > 1. According to Arnold et al (1998), the Bayes 

predictive density function of y given x = (x1,x2…, xm) is given by  

h(y/x) = ∫ ∫ f (y|x, θ, λ)π(θ, λ)dλdθ
∞

0

∞

0
                                                                                                        (38) 

wheref (y|x, θ, λ) is the conditional density of y=xr given xm, expressed as  

f (y/x,θ, λ) = 
[K(y;θ,λ)−K(xm;θ,λ)]

r−m−1

Γ(r−m)

f(y;θ,λ)

1−F(xm;θ,λ)
, xm<y<∞                                                                            (39) 

From (1), (25), (32) and (39), we have 

f (y|x, θ, λ) =
𝜃𝑟−𝑚𝜆

Γ(r−m)𝑦2

(1−(1+
1

𝑦
)
−𝜆
)

𝜃−1

(1+
1

𝑦
)
𝜆+1

1

(1−(1+
1

xm
)
−λ
)

𝜃(𝑙𝑜𝑔 (
1−(1+

1

xm
)
−λ

1−(1+
1

y
)
−λ ))

𝑟−𝑚−1

                                     (40) 

Using (20) and (40) in (38), the Bayes predictive density can be obtained as 

h(y/x) = 
1 Γ(r+b1)

D Γ(r−m)
(

1

y2(1+1 y⁄ )
) ∫

λm+b2e
−λ[D2+log(1+

1
𝑦)]

[a1−log{1−(1+
1

𝑦
)
−λ
}]r+b1

∞

0

1

1−(1+
1

𝑦
)−λ
𝑒𝑥𝑝(−𝐷3(𝑙𝑜𝑔 (

1−(1+
1

xm
)
−λ

1−(1+
1

y
)
−λ ))

𝑟−𝑚−1

), xm< y<∞                  (41) 

From (41), under SELF, the Bayes point predictor of rth upper record value r>m is obtained as 
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𝑌̂ = E[Y/x] = ∫ y h(y|x)
∞

xm
𝑑𝑦                                                                                                                         (42) 

which cannot be simplified in a closed form.  

To apply important sampling method, we simplify the joint Bayes predictive distribution of y and λ from (38) 

as  

h (y,λ/x) = ∫ f(y/x, θ, λ)π(θ, λ/x)
∞

0
 dθ 

∝
λ

y2

[1 +
1

y
]−(1+λ)

1 − (1 +
1

xm
)
−λ
λm+b2−1e−λD2 (

1 − (1 +
1

xm
)
−λ

1 − (1 +
1

y
)−λ

)
e

−D3[log{
1−(1+

1
xm

)
−λ

1−(1+
1
𝑦
)
−λ

}]r−m−1

[a1 − log(1 − (1 +
1

y
)−λ]r+b1

 

 

= f(y/y>xm)Gλ(m+b2,D2)W2(λ, y)                                                                                                                     (43) 

where f (y│y>xm) is the left truncated density function of X with X>xm at point x=y, which can be obtained 

from (1) as  

fx(y/y>xm) = 
λ

y2

[1+
1

𝑦
]−(1+λ)

1−(1+
1

xm
)−λ

                                                                                                                                (44) 

Gλ(m+b2,D2) is the gamma density of parameter λ and W2(λ,y) is a function based on λ and y defined as  

𝑊2(𝜆, 𝑦) = (
1−(1+

1

xm
)
−λ

1−(1+
1

y
)−λ

)
e

−D3[log

{
 

 1−(1+
1
xm

)
−λ

1−(1+
1
𝑦)
−λ

}
 

 

]r−m−1

[a1−log(1−(1+
1

y
)−λ]r+b1

                                                                                      (45) 

The importance sampling method can be applied in the following way to obtain the Bayes predictive estimate 

of the rth upper record value, r> m. 

Algorithm 2 

Step 1: Generate λ1 from Gλ (m+b2,D2) distribution. 

Step 2: Generate y1 from left truncated IEP distribution for   given λ1. 

Step 3: Repeat steps 1 and 2 N times and obtain (λ1, y1) , (λ2, y2) , …, (λN, yN). 
Step 4: Based on the values of λ and y obtained in Step 3, compute the values    

            W2(λ1, y1) , W2(λ2, y2) , ……., W2(λN, yN) 
Then under SELF, the Bayes predictive estimator of rth upper record value is estimated as  

ŶSelf = Ê(y|𝑥)= 

1

N
∑ yiW2(λi,yi)
N
1

1

N
∑ W2(λi,yi)
N
1

                                                                                                                      (46) 

Under LLF, the Bayes estimator of rth upper record value is given by: 

Ŷ = −
1

ν
ln [Êy|𝑥(e

−νy)]                                                                                                                                 (47) 

where Êy|𝑥(e
−νy) can be obtained as  

Êy|𝑥(e
−νy) =

1

N
∑ e−νyiW2(λi,yi)
N
1
1

N
∑ W2
N
1 (λi,yi)

                                                                                                                     (48) 

 

4.3   Bayesian Predictive Interval for rth Upper Record Value y= xr, r>m 

 

The Bayesian (1-α)100%  predictive interval for Y= Xr r>m is obtained by evaluating 

 P(L < y = xr< U)=1-α, r>m 

In case of equal tail predictive interval we have P(xm< y <L) = α/2 = P( y ≥ U), where P(xm< y < L) = 

∫ h(y|𝑥)dy 
L

xm
and P(y ≥ U) = ∫ h(y|𝑥

∞

U
)dy  

For given value of α, 0 <α< 1, the P( xm< y < L) can be obtain using (41) as  

       P(xm< y < L) 

        = 
Γ(r+b1)

𝐷Γ(r−m)
∫

1

y2(1+1 y⁄ )

L

xm
∫

λm+b2e
−λ(D2+log(1+

1
y))

(a1−log (1−(1+
1

y
)
−λ
)r+b1

∞

0

1

1−(1+
1

y
)−λ
e

−D3

(

 
 
log(

1−(1+
1
xm

)
−λ

1−(1+
1
y)
−λ

)

)

 
 

r−m−1

𝑑𝜆𝑑𝑦 
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which can be solved for L by using any method of numerical integration. Similarly we can obtain the value of  

upper limit U . 

 

5.  SIMULATION  STUDY AND DATA ANALYSIS  

 

In this section we assess the performance of the estimators using simulation study. A real data set is also 

considered to exemplify the results obtained in the paper. 

 

5.1. Simulation Study 

 

We perform a simulation study to examine the behavior of the estimators. Behavior of the estimators of the 

unknown parameters is measured by their mean square error (MSEs) and length of the confidence intervals. 

In this section, a simulation study is conducted to observe the behavior of the estimators proposed by different 

methods of estimation and prediction. m( = 5, 8 and 13) number of record values are simulated from the IEP 

distribution with θ=5 and λ=2. The simulated data are used to compute MLEs, Bayes estimates, MSEs and 

interval estimates.  

We mention that the simulated results may be influenced by the generated records, however the results based 

on a large number of repetitions may represent the same phenomenon. In this study, the results are based on 

1000 repetitions and are reported in Table  1, 2, and 3. Average estimates and means square error (MSE) 

values are taken into account to compare the performance of proposed estimators. A Simulation is carried out 

using  R software. 

Table 1 to Table 3 report  Bayes estimates obtained under SELF and LLF corresponding to the values of ν as  

-0.1(0.04)0.06, maximum likelihood estimates, MSEs and confidence intervals. The hyper-parameter values 

are fixed as a1= 3, a2= 10, b1= 20 and b2= 15 so that the prior means remain close to the true parameter values. 

Table 1.  Results for Bayes estimate and MLE for m =5 
Method ν 𝜃 𝜎̂ MSE(𝜃̂) MSE(𝜎̂) 

 

CI for 𝜃 CI for 𝜎 

LLF -0.1 

 

5.04003 

 

2.00021 

 

0.07542 

 

0.02039 

 

(4.42906, 5.48352) 

1.05445 

(1.65821, 2.24881) 

0.59059 

 -0.06 

 

5.01412 

 

2.00635 

 

0.06019 

 

0.01705 

 

(4.43304, 5.40843) 

0.97539 

(1.71416, 2.23049) 

0.51633 

 -0.02 

 

4.97562 

 

1.98832 

 

0.07986 

 

0.01680 

 

(4.20033, 5.35577) 

1.15544 

(1.66615, 2.24386) 

0.57771 

 0.02 

 

4.94578 

 

1.96818 

 

0.07466 

 

0.02396 

 

(4.43011, 5.47868) 

1.04857 

(1.65963, 2.24867) 

0.58904 

 0.06 

 

4.98048 

 

2.00669 

 

0.08541 

 

0.01414 

 

(4.33676, 5.44091) 

1.10414 

(1.72051, 2.19597) 

0.47546 

SELF  5.01775 

 

1.97584 

 

0.07441 

 

0.01852 

 

(4.37816, 5.50362) 

1.12546 

(1.69276,2.20633) 

0.51357 

MLE  9.01526 

 

2.54473 

 

43.33210 

 

2.32997 

 

(4.60145, 10.42907) 

5.82762 

(2.24404, 2.84542) 

3.98220 

 

Table 2.  Results for Bayes estimate and MLE for m = 8 
Method ν 𝜃 𝜎̂ MSE(𝜃̂) MSE(𝜎̂) 

 

CI for 𝜃 CI for 𝜎 

LLF 
-0.1 

4.89849 
 

1.99189 
 

0.13096 
 

0.02165 
 

(4.17987, 5.51791) 
1.33804 

(1.65505, 2.24975) 
0.59471 

 

-0.06 

4.94672 

 

2.00274 

 

0.08665 

 

0.01987 

 

(4.25516, 5.44591) 

1.19075 

(1.67133, 2.21430) 

0.54297 

 
-0.02 

4.90114 
 

2.00197 
 

0.12235 
 

0.01722 
 

(4.19608, 5.45982) 
1.26374 

(1.71385, 2.22894) 
0.51509 

 

0.02 

4.90626 

 

1.97895 

 

0.11149 

 

0.01902 

 

(4.18397, 5.45574) 

1.27178 

(1.60492, 2.20793) 

0.60301 

 

0.06 

4.92202 

 

2.00256 

 

0.09487 

 

0.01841 

 

(4.28271, 5.45910) 

1.17639 

(1.72158, 2.28653) 

0.56494 

SELF  4.90183 

 

1.98816 

 

0.10838 

 

0.02288 

 

(4.31952, 5.54689) 

1.22737 

(1.67081, 2.22838) 

0.55757 

MLE  4.97507 
 

2.14362 
 

8.05752 
 

0.90945 
 

(4.41590, 5.53423) 
1.11833 

(1.95576, 2.33148) 
0.37571 
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Table 3.  Results for Bayes estimate and MLE for m = 13 
Method ν 𝜃 𝜎̂ MSE(𝜃̂) MSE(𝜎̂) 

 

CI for 𝜃 CI for 𝜎 

LLF -0.1 
 

4.85974 
 

2.02588 
 

0.15544 
 

0.03975 
 

(4.1526, 5.48891) 
1.33631 

(1.59786, 2.33230) 
0.73445 

 -0.06 

 

4.86661 

 

2.02791 

 

0.14508 

 

0.03428 

 

(4.14489, 5.44889) 

1.30401 

(1.62463, 2.36120) 

0.73657 

 -0.02 
 

4.85437 
 

2.07318 
 

0.13805 
 

0.02914 
 

(4.11326, 5.56327) 
1.45001 

(1.66135, 2.33506) 
0.67371 

 0.02 

 

4.81474 

 

2.03004 

 

0.14863 

 

0.03927 

 

(4.10187, 5.47058) 

1.36871 

(1.49251, 2.38118) 

0.88867 

 0.06 
 

4.86711 
 

2.04052 
 

0.11107 
 

0.04192 
 

(4.34500, 5.47359) 
1.12859 

(1.58910, 2.39896) 
0.80987 

SELF  4.86087 

 

2.04592 

 

0.15656 

 

0.03221 

 

(4.03052, 5.48677) 

1.45625 

(1.68120, 2.33259) 

0.65139 

MLE  4.27429 
 

1.94959 
 

1.26189 
 

0.49983 
 

(4.15665, 5.19921) 
1.04256 

(1.81033, 2.08886) 
0.27854 

From the Tables 1 to 3, we observe that number (m) of record values increases, behavior of maximum 

likelihood  estimates improve in terms of smaller MSE values. Furthermore, the confidence  interval length 

for asymptotic confidence intervals decrease. It can be seen that simulated asymptotic confidence intervals 

contain the estimate as well as true values. 

As the number of record values increases, MSEs of Bayes estimators increases and lengths of confidence 

intervals also increase. A smaller value(-0.06) of parameter (ν) of LINEX loss function provides better 

estimates of the parameters as well as smaller length confidence intervals  compared to the estimators 

obtained  under SELF and MLE. In general, Bayes estimates outperform  MLEs and Bayes estimates obtained 

under LLF outperform  Bayes estimates obtained under SELF for suitable values of ν. In case of Bayes 

estimates under LLF we find that as ν increases, estimates of  both the parameters decrease. 

 

5.2.  Real data application 

  

In this section a real data set regarding the failure terms of 84 Aircrafts windshield is considered . The 

windshield is a complete piece of experiment on a large aircraft. Their failures do not result in damage of the 

aircraft but do result in replacement of the windshield. 

This data set is used and analyzed by Murthy et. al (2004). It was shown in Maurya et. al (2019) that IEP 

distribution fits well to the complete data compared to generalized inverted exponentiated distribution and 

inverted exponentiated Rayleigh distribution.  

We present below only the upper record  values obtained from the original data . 

0.040, 1.866, 2.385, 3.443,3.467, 3.478, 3.578, 3.595,3.699, 3.779, 3.924, 4.035, 4.121, 4.167, 4.240, 4.255, 

4.278, 4.305, 4.376, 4.449. 

Based on this data set MLEs and  Bayes estimates of the parameters are calculated. We have made prediction 

for the r-th (= 21, 22, 23, 24) upper record values based on m = 20 observed upper record values along with 

interval estimates. Bayes estimation under SELF and LLF(ν = 40) are obtained using the hyper-parameter 

values fixed as a1= 0.13, a2= 1.2, b1= 7 and b2= 2.2.The results are shown in Tables 4 and 5. 

Table. 4  Estimates of the parameters based on m= 20 upper record values for real data. 

 

 

 

 

Table. 5  Prediction and interval estimates of r-th upper record value when m= 20 

 

 

 

 

 

 

 

 

 

Parameters MLE Bayesian method  

SELF LLF(ν = 40) 

𝜃 31.43144 32.83528 13.23990 

𝜎   3.71575   3.35203   1.51685 

r Actual value ( Yr) Classical 

method 

Bayesian method  

SELF LLF(  ν = 40) 

21 4.485  4.44915 4.77473 

(4.54781, 5.09598) 

4.56171 

(4.47298, 4.78773) 

22 4.570 4.65947 4.97084 
(4.61859, 5.37907) 

4.60594 
(4.50666, 4.80463) 

23 4.602 4.87357 5.27896 

(4.92551, 5.71976) 

4.65482 

(4.55340, 4.82563) 

24 4.663 5.09132 5.54493 
(5.17173, 5.95583) 

4.70621 
(4.61490, 4.84997) 
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From the Tables 4 and 5  we observe  that the Bayes prediction method  under LLF outperform in prediction 

for future records compared to the Bayes prediction made under SELF and by classical method. 

The predictive interval for future records obtained by Bayesian method provides shorter length under LLF 

compared to under SELF. 

The length of Bayesian predictive interval for future records increases as r increases in case of SELF where as 

it decreases in case of LLF when ν = 40. 

 

6. CONCLUSION 

 

In this paper, estimation from inverted exponentiated Pareto distribution based on upper record 

values has been considered. Both the classical and Bayesian inference of the unknown parameters are 

provided. It is observed that the MLEs of the unknown parameters cannot be 

obtained in closed form, hence iterative method is considered. We also consider 

the Bayes estimates of the unknown parameters based on different loss functions, and it is 

observed that they cannot be obtained in explicit forms, hence importance sampling  has 

been considered. Prediction for future upper record is also obtained based on classical as well as Bayesian 

approach. In our study  we observe that LINEX loss function provides better estimates of the parameters as 

well as smaller length confidence intervals  compared to the estimators obtained  under SELF and MLE. In 

general, Bayes estimates outperform MLEs and Bayes estimates obtained under LLF outperform  Bayes 

estimates obtained under SELF for suitable values of the parameter of LINEX loss function. 
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