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ABSTRACT 

Bahadur’s stochastic comparison of asymptotic relative efficiency of combining infinitely independent tests in case of 
conditional log-logistic distribution is proposed. Six free-distribution combination producers namely; Fisher, logistic, sum of p-

values, inverse normal, Tippett’s method and maximum of p-values were studied. Several comparisons among the six 

procedures using the exact Bahadur’s slopes were obtained. Results showed that logistic producer is the best 

procedure.  

 

1.  INTRODUCTION 

 

Bahadur’s stochastic comparison is one of the most common approach in asymptotic relative efficiency for 

two test procedures in which the 𝑇𝑦𝑝𝑒 𝐼 and 𝑇𝑦𝑝𝑒 𝐼𝐼 error probabilities changes with increasing sample 

size, and the manner of the alternatives are behave.  

In comparison of test procedures, let 𝐻0: 𝐹 ∈ ℱ0 is to be tested, where ℱ0 is a family of distributions, for any 

test procedure 𝑇𝑛 . The function 𝛾𝑛(𝑇, 𝐹) = 𝑃𝐹(𝑇𝑛 rejects 𝐻0), for distribution functions 𝐹, represents the 

power function of 𝑇𝑛 . Under 𝐻0, 𝛾𝑛(𝑇, 𝐹) represents the probability of a 𝑇𝑦𝑝𝑒 𝐼 error. The size of the test is 

𝛼𝑛(𝑇, ℱ0) = sup𝐹∈ℱ0𝛾𝑛(𝑇, 𝐹). For 𝐹 ∉ ℱ0, the probability of a 𝑇𝑦𝑝𝑒 𝐼𝐼 error is 𝛽𝑛(𝑇, 𝐹) = 1 − 𝛾𝑛(𝑇, 𝐹). 

We are interesting in studying consistent tests, that is for fixed 𝐹 ∉ ℱ0, 𝛽𝑛(𝑇, 𝐹) → 0 as 𝑛 → ∞, and 

unbiased tests that is 𝐹 ∉ ℱ0, 𝛾𝑛(𝑇, 𝐹) ≥ 𝛼𝑛(𝑇, ℱ0). To compare two test procedures through their power 

functions, we will use the asymptotic relative efficiency (ARE) for two test procedures 𝑇𝐴 and 𝑇𝐵 , with 

sample sizes 𝑛1 and 𝑛2 respectively, then the ratio 𝑛1/𝑛2 goes to some limit. This limit is the ARE of 𝑇𝐵 

relative to 𝑇𝐴. In Bahadur approach, the following behaviors are satisfied: the 𝑇𝑦𝑝𝑒 𝐼 error is 𝛼𝑛 → 0, the 

𝑇𝑦𝑝𝑒 𝐼𝐼 error is 𝛽𝑛 → 0, and the alternatives is 𝐹𝑛 = 𝐹 fixed. Let 𝑇𝑖  be independent one tailed test statistic 

for testing 𝐻𝑖,0: 𝜃𝑖 = 𝜃𝑖,0 for the independent real parameter 𝜃𝑖 versus 𝐻𝑖,0: 𝜃𝑖 > 𝜃𝑖,0, 𝑖 = 1,… , 𝑘, where the 

null hypothesis is rejected for large values of 𝑇𝑖 . It is desired to combine be used to test the combined 

hypothesis 𝐻0: 𝜃𝑖 = 𝜃𝑖,0, 𝑖 = 1, … , 𝑘, versus the alternative 𝜃𝑖 ≥ 𝜃𝑖,0, 𝑖 = 1, … , 𝑘, with strict inequality at 

least one. Asymptotic relative efficiency have been considered by many authors. Kallenberg [10] showed that 

in testing problems in multivariate exponential families the LR test is deficient in the sense of Bahadur of 

order 𝑂(𝑙𝑜𝑔 𝑛). Abu-Dayyeh and El-Masri [2] studied six free-distribution methods (sum of p-values, 

inverse normal, logistic, Fisher, minimum of p-values and maximum of p-values) of combining infinitely 

number of independent tests when the p-values are IID rv’s distributed with uniform distribution under the 

null hypothesis versus triangular distribution with essential support (0,1) under the alternative hypothesis. 

They proved that the sum of p-values method is the best method. Abu-Dayyeh, et al. [1] they combined 
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infinity number of independent tests for testing simple hypotheses against one-sided alternative for normal 

and logistic distributions, they used four methods of combining (Fisher, logistic, sum of p-values and inverse 

normal). Al-Masri [5] studied six methods of combining independent tests. He showed under conditional 

shifted Exponential distribution that the inverse normal method is the best among six combination methods. 

AL-Talib, et al. [8] considered combining independent tests in case of conditional normal distribution with 

probability density function 𝑋|𝜃 ∼ 𝑁(𝛾𝜃, 1), 𝜃 ∈ [𝑎,∞], 𝑎 ≥ 0 when 𝜃1, 𝜃2, . .. have a distribution function 

(DF) 𝐹𝜃 . They concluded that the inverse normal procedure is the best procedure. Al-Masri [6] considered 

combining 𝑛 independent tests of simple hypothesis, vs one-tailed alternative as 𝑛 approaches infinity, in 

case of Laplace distribution 𝕃(𝛾, 1). He showed that the sum of p-values procedure is better than all other 

procedures under the null hypothesis, and the inverse normal procedure is better than the other procedures 

under the alternative hypothesis. Al-Masri and Al-Momani [4] considered combining 𝑛 independent tests of 

simple hypothesis, vs one-tailed alternative as 𝑛 approaches infinity, in case of log-logistic distribution. They 

showed that the sum of p-values procedure is better than all other procedures under the null hypothesis and 

under the alternative hypothesis. Al-Masri [7] considered the problem of combining 𝑛 independent tests as 

𝑛 → ∞ for testing a simple hypothesis in case of log-normal distribution. He showed that as 𝜉 → 0, the 

maximum of p-values is better than all other methods, followed in decreasing order by the inverse normal, 

logistic, the sum of p-values, Fisher and Tippett's procedure. Also, as 𝜉 → ∞ the worst method the sum of p-

values and the other methods remain the same, since they have the same limit. 

The log-logistic distribution (𝐿𝐿(𝜗, 𝜎)), which is known also as Fisk distribution in economics, is used to 

model income data. It is an important right skewed distribution. It is the distribution of the logarithm of a 

random variable that has logistic distribution, and can have a non-monotonic hazard function for some values 

of the shape parameter. Also, often used in decision making business, decision making with project 

management, audio dithering and serves as a parametric model for survival analysis. Let 𝑋 be a random 

variable following the log-logistic distribution.  

The distribution function (cdf) of 𝑋 can take the following form  

 𝐹(𝑥; 𝜗) = Ψ𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐 (
ln(𝑥)−𝜗

𝜎
) 𝐼ℝ+(𝑥) (1.1) 

The probability density function (pdf) of 𝑋 is given by  

 𝑓(𝑥; 𝜗) =
1

𝜎𝑥
𝜑𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐 (

ln(𝑥)−𝜗

𝜎
) 𝐼ℝ+(𝑥), 𝜗 ∈ ℝ, 𝜎 ∈ ℝ

+. (1.2) 

Where 𝐼𝐴 is the indicator function and Ψ𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐(ℎ) = (1 + 𝑒
−ℎ)−1 is the cdf of the standard logistic 

distribution with 𝐿(0,1). The mean of 𝑋 is 𝐸(𝑋) = 𝜎 𝜋sin(𝜋𝜎); if    𝜎 > 1, else undefined. For more details 

see Ahsanullah and Alzaatreh [3].  

 

2.  THE BASIC PROBLEM 

 

Consider testing the hypothesis  

 𝐻0
(𝑖)
: 𝜂𝑖 = 𝜂0

𝑖 , 𝑣𝑠 , 𝐻1
(𝑖)
: 𝜂𝑖 ∈ Ω𝑖 − {𝜂0

𝑖 } (2.1) 

such that 𝐻0
(𝑖)

 becomes rejected for large values of some real valued continuous random variable 𝑇(𝑖), 𝑖 =

1,2, … , 𝑛. The 𝑛 hypotheses are combined into one as  

 𝐻0
(𝑖)
: (𝜂1, . . . , 𝜂𝑛) = (𝜂0

1, . . . , 𝜂0
𝑛), 𝑣𝑠 , 𝐻1

(𝑖)
: (𝜂1, . . . , 𝜂𝑛) ∈ {∏

𝑛
𝑖=1 Ω𝑖 − {(𝜂0

1, . . . , 𝜂0
𝑛)}} (2.2) 

For 𝑖 = 1,2, … , 𝑛 the p-value of the i-th test is given by  

 𝑃𝑖(𝑡) = 𝑃𝐻0
(𝑖)(𝑇(𝑖) > 𝑡) = 1 − 𝐹

𝐻0
(𝑖)(𝑡) (2.3) 

where 𝐹
𝐻0
(𝑖)(𝑡) is the DF of 𝑇(𝑖) under 𝐻0

(𝑖)
. Note that 𝑃𝑖 ∼ 𝑈(0,1) under 𝐻0

(𝑖)
. 

 

In this paper, we will consider the special case where: 𝜂𝑖 = 𝜗Λ𝑖 , 𝑖 = 1,… , 𝑛. Then our proposed model will 

be 𝑊|Λ ∼ 𝐿𝐿(Λ𝜗, 1), Λ ∈ ℜ\(−∞, 𝜅), 𝜅 ≥ 0 where Λ1, Λ2 , . .. are independent identically distributed with 

DF 𝐻Λ with support defined on Λ ∈ ℜ\(−∞, 𝜅), 𝜅 ≥ 0, assuming that 𝑇(1), … , 𝑇(𝑛) are independent,then 

(2.1) reduces to  

 𝐻0: 𝜗 = 0    𝑣𝑠    𝐻1: 𝜗 > 0, (2.4) 

It follows that the p-values 𝑃1, … , 𝑃𝑛 are also iid rv’s that have a 𝑈(0,1) distribution under 𝐻0, and under 𝐻1 

have a distribution whose support is a subset of the interval (0,1) and is not a 𝑈(0,1) distribution. 

Therefore, if 𝑓 is the probability density function (pdf) of 𝑃, then (2.4) is equivalent to  

 𝐻0: 𝑃 ∼ 𝑈(0,1), 𝑣𝑠 , 𝐻1: 𝑃 ≁ 𝑈(0,1) (2.5) 
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where 𝑃 has a pdf 𝑓 with support subset of the interval (0,1). 

By sufficiency we may assume 𝑛𝑖 = 1 and 𝑇(𝑖) = 𝑋𝑖 for 𝑖 = 1,… , 𝑛. Then we consider the sequence {𝑇(𝑛)} 

of independent test statistics, thus is we will take a random sample 𝑋1, … , 𝑋𝑛 of size 𝑛 and let 𝑛 → ∞ and 

compare the six non-parametric methods via exact Bahadur slope (EBS).  

The producers that we will used in this paper are Fisher, logistic, sum of p-values, inverse normal, Tippett’s 

method and maximum of p-values. These producers are based on p-values of the individual statistics 𝑇𝑖 , and 

reject 𝐻0 if  

Ψ𝐹𝑖𝑠ℎ𝑒𝑟 = −2∑

𝑛

𝑖=1

ln(𝑃𝑖) > 𝜒2𝑛,𝛼
2 , 

Ψ𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐 = −∑

𝑛

𝑖=1

ln (
𝑃𝑖

1 − 𝑃𝑖
) > 𝑏𝛼 , 

Ψ𝑁𝑜𝑟𝑚𝑎𝑙 = −∑

𝑛

𝑖=1

Φ−1(𝑃𝑖) > √𝑛Φ
−1(1 − 𝛼), 

Ψ𝑆𝑢𝑚 = −∑

𝑛

𝑖=1

𝑃𝑖 > 𝐶𝛼 , 

Ψ𝑀𝑎𝑥 = −𝑚𝑎𝑥 𝑃𝑖 < 𝛼
1
𝑛, Ψ𝑇 = −𝑚𝑖𝑛 𝑃𝑖 < 1 − (1 − 𝛼)

1
𝑛 . 

where Φ is the DF of standard normal distribution. 

 

3.  DEFINITIONS 

 

This section lays out some basic tools to Bahadur’s stochastic comparison theory that used in this article    

Definition (Bahadur efficiency and exact Bahadur slope (EBS))  Let 𝑋1, … , 𝑋𝑛 be i.i.d. from a distribution 

with a probability density function 𝑓(𝑥, 𝜃), and we want to test 𝐻0: 𝜃 = 𝜃0 vs. 𝐻1: 𝜃 ∈ Θ − {𝜃0}. Let {𝑇𝑛
(1)
} 

and {𝑇𝑛
(2)
} be two sequences of test statistics for testing 𝐻0. Let the significance attained by 𝑇𝑛

(𝑖)
 be 𝐿𝑛

(𝑖)
=

1 − 𝐹𝑖(𝑇𝑛
(𝑖)
), where 𝐹𝑖(𝑇𝑛

(𝑖)
) = 𝑃𝐻0(𝑇𝑛

(𝑖)
≤ 𝑡𝑖), 𝑖 = 1,2. Then there exists a positive valued function 𝐶𝑖(𝜃) 

called the exact Bahadur slope of the sequence {𝑇𝑛
(𝑖)
} such that  

 𝐶𝑖(𝜃) = lim
𝜃→∞

− 2𝑛−1ln(𝐿𝑛
𝑖 ) 

with probability 1 (w.p.1) under 𝜃 and the Bahadur efficiency of {𝑇𝑛
(1)
} relative to {𝑇𝑛

(2)
} is given by 

𝑒𝐵(𝑇1, 𝑇2) = 𝐶1(𝜃)/𝐶2(𝜃). Serfling [11]  

Theorem 1  (Large deviation theorem)  Let 𝑋1, 𝑋2, … , 𝑋𝑛 be IID, with distribution 𝐹 and put 𝑆𝑛 =
∑𝑛𝑖=1 𝑋𝑖. Assume existence of the moment generating function (mgf) 𝑀(𝑧) = 𝐸𝐹(𝑒

𝑧𝑋), 𝑧 real, and put 

𝑚(𝑡) = 𝑖𝑛𝑓𝑧𝑒
−𝑧(𝑋−𝑡) = 𝑖𝑛𝑓𝑧𝑒

−𝑧𝑡𝑀(𝑧). The behavior of large deviation probabilities 𝑃(𝑆𝑛 ≥ 𝑡𝑛), where 

𝑡𝑛 → ∞ at rates slower than 𝑂(𝑛). The case 𝑡𝑛 = 𝑡𝑛, if −∞ < 𝑡 ≤ 𝐸𝑌, then 𝑃(𝑆𝑛 ≤ 𝑛𝑡) ≤ [𝑚(𝑡)]
𝑛, the  

 −2𝑛−1ln 𝑃𝐹(𝑆𝑛 ≥ 𝑛𝑡) → −2 ln 𝑚(𝑡)    a. s.   (𝐹𝜃). 
Serfling [11]  

Theorem 2  (Bahadur theorem) Let {𝑇𝑛} be a sequence of test statistics which satisfies the following:   

    1.  Under 𝐻1: 𝜃 ∈ Θ − {𝜃0}:  

 𝑛−
1

2𝑇𝑛 → 𝑏(𝜃)    a. s.    (𝐹𝜃), 
where 𝑏(𝜃) ∈ ℜ.  

    2.  There exists an open interval 𝐼 containing {𝑏(𝜃): 𝜃 ∈ Θ − {𝜃0}}, and a function 𝑔 continuous on 𝐼, 
such that  

 lim
𝑛
− 2𝑛−1log sup

𝜃∈Θ0

[1 − 𝐹𝜃𝑛(𝑛
1

2𝑡)] = lim
𝑛
− 2𝑛−1log [1 − 𝐹𝜃𝑛(𝑛

1

2𝑡)] = 𝑔(𝑡),    𝑡 ∈ 𝐼. 

 

 If {𝑇𝑛} satisfied (1)-(2), then for 𝜃 ∈ Θ − {𝜃0}  

 −2𝑛−1log sup
 𝜃∈Θ0

[1 − 𝐹𝜃𝑛(𝑇𝑛)] → 𝐶(𝜃)    a. s.    (𝐹𝜃). 

Bahadur [9]  

Theorem 3  Let 𝑋1, … , 𝑋𝑛 be i.i.d. with probability density function 𝑓(𝑥, 𝜃), and we want to test 𝐻0: 𝜃 = 0 
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vs. 𝐻1: 𝜃 > 0. For 𝑗 = 1,2, let 𝑇𝑛,𝑗 = ∑
𝑛
𝑖=1 𝑓𝑖(𝑥𝑖)/√𝑛 be a sequence of statistics such that 𝐻0 will be 

rejected for large values of 𝑇𝑛,𝑗 and let 𝜑𝑗 be the test based on 𝑇𝑛,𝑗. Assume 𝔼𝜃(𝑓𝑖(𝑥)) > 0, ∀𝜃 ∈ 𝛩, 

𝔼0(𝑓𝑖(𝑥)) = 0, 𝑉𝑎𝑟(𝑓𝑖(𝑥)) > 0 for 𝑗 = 1,2. Then  

1. If the derivative 𝑏′𝑗(0) is finite for 𝑗 = 1,2, then  

 lim
𝜃→0

𝐶1(𝜃)

𝐶2(𝜃)
=
𝑉𝑎𝑟𝜃=0(𝑓2(𝑥))

𝑉𝑎𝑟𝜃=0(𝑓1(𝑥))
[
𝑏′1(0)

𝑏′2(0)
]
2

, 

where 𝑏𝑖(𝜃) = 𝔼𝜃(𝑓𝑗(𝑥)), and 𝐶𝑗(𝜃) is the EBS of test 𝜑𝑗 at 𝜃.  

2. If the derivative 𝑏′𝑗(0) is infinite for 𝑗 = 1,2, then  

 lim
𝜃→0

𝐶1(𝜃)

𝐶2(𝜃)
=
𝑉𝑎𝑟𝜃=0(𝑓2(𝑥))

𝑉𝑎𝑟𝜃=0(𝑓1(𝑥))
[lim
𝜃→0

𝑏′1(𝜃)

𝑏′2(𝜃)
]
2

. 

Al-Masri [5]  

Theorem 4 If 𝑇𝑛
(1)

 and 𝑇𝑛
(2)

 are two test statistics for testing 𝐻0: 𝜃 = 0 vs. 𝐻1: 𝜃 > 0 with distribution 

functions 𝐹0
(1)

 and 𝐹0
(2)

 under 𝐻0, respectively, and that 𝑇𝑛
(1)

 is at least as powerful as 𝑇𝑛
(2)

 at 𝜃 for any 

𝛼, then if 𝜑𝑗 is the test based on 𝑇𝑛
(𝑗)

, 𝑗 = 1,2, then  

 𝐶𝜑1
(1)
(𝜃) ≥ 𝐶𝜑2

(2)
(𝜃). 

Serfling [11]  

Corollary 1 If 𝑇𝑛 is the uniformly most powerful test for all 𝛼, then it is the best via EBS. See [10]  

Theorem 5  

 2𝑡 ≤ 𝑚𝑆(𝑡) ≤ 𝑒𝑡, ∀: 0 ≤ 𝑡 ≤ 0.5, 
where  

 𝑚𝑆(𝑡) = inf
𝑧>0
𝑒−𝑧𝑡

𝑒𝑧−1

𝑧
. 

Al-Masri [5]  

Theorem 6    

    1.  𝑚𝐿(𝑡) ≥ 2𝑡𝑒
−𝑡 ,   ∀𝑡 ≥ 0,  

    2.  𝑚𝐿(𝑡) ≤ 𝑡𝑒
1−𝑡 ,   ∀𝑡 ≥ 0.852,  

    3.  𝑚𝐿(𝑡) ≤ 𝑡 (
𝑡2

1+𝑡2
)
3

𝑒1−𝑡 ,   ∀𝑡 ≥ 4,  

where 𝑚𝐿(𝑡) = inf𝑧∈(0,1)𝑒
−𝑧𝑡𝜋𝑧 𝑐𝑠𝑐(𝜋𝑧) and 𝑐𝑠𝑐 is an abbreviation for cosecant function. 

Al-Masri [5]  

Theorem 7  For 𝑥 > 0,  

 𝜙(𝑥) [
1

𝑥
−

1

𝑥3
] ≤ 1 − Φ(𝑥) ≤

𝜙(𝑥)

𝑥
. 

Where 𝜙 is the pdf of standard normal distribution. See [5]  

Theorem 8  For 𝑥 > 0,  

 1 − Φ(𝑥) >
𝜙(𝑥)

𝑥+√
𝜋

2

. 

Al-Masri [5]  

Lemma 1    

    1.  𝑚𝐿(𝑡) ≥ inf0<𝑧<1𝑒
−𝑧𝑡 = 𝑒−𝑡  

    2.  𝑚𝐿(𝑡) ≤
𝑒−𝑡

2/(𝑡+1)(
𝜋𝑡

𝑡+1
)

𝑠𝑖𝑛(
𝜋𝑡

𝑡+1
)

  

    3.  

{
 

 𝑚𝑠(𝑡) = inf
𝑧>0

𝑒−𝑧𝑡(1−𝑒−𝑧)

𝑧
≤ inf
𝑧>0

𝑒−𝑧𝑡

𝑧
≤ −𝑒𝑡,     𝑡 < 0

𝑚𝑠(𝑡) ≥ −2𝑡, −
1

2
≤ 𝑡 ≤ 0.

  

    4.   
𝑥−1

𝑥
≤ ln𝑥 ≤ 𝑥 − 1,   𝑥 > 0  

Al-Talib, et al. [8]  

 

4.  DERIVATION OF THE EBS WITH GENERAL DF 𝑯𝚲 

 

In this section we will study testing problem (2.4). We will compare the six methods Fisher, logistic, sum of 

p-values,the inverse normal, Tippett’s method and maximum of p-values using EBS.  



 171 

Let 𝑋1, … , 𝑋𝑛 be IID with probability density function (1.2) and we want to test (2.4). Then by (1.1), the p-

value is given by  

 𝑃𝑛(𝑋𝑛) = 1 − 𝐹
𝐻0(𝑋𝑛) = 1 − Ψ𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐(ln(𝑥𝑛)). (4.1) 

 The next three lemmas give the EBS for Fisher (𝐶𝐹), logistic (𝐶𝐿), inverse normal (𝐶𝑁), and sum of p-values 

(𝐶𝑆), Tippett’s method (𝐶𝑇) and maximum of p-values (𝐶𝑚𝑎𝑥)methods.  

Lemma 2  The exact Bahadur’s slope (EBS’s) result for the tests, which is given at the end of Section 3, are 

as follows:   

    1.   Fisher method. 𝐶𝐹(𝜗) = 𝑏𝐹(𝜗) − 2ln(𝑏𝐹(𝜗)) + 2ln(2) − 2,  

where  

 𝑏𝐹(𝜗) = 2𝜗𝔼𝐻Λ (
Λ

1−𝑒−Λ𝜗
). 

    2.   Logistic method. 𝐶𝐿(𝜗) = −2ln(𝑚(𝑏𝐿(𝜗))), where  

 𝑚𝐿(𝑡) = inf
𝑧∈(0,1)

𝑒−𝑧𝑡𝜋𝑧 𝑐𝑠𝑐(𝜋𝑧) 

and  

 𝑏𝐿(𝜗) = 𝜗𝔼𝐻Λ(Λ). 

 

    3.   Sum of p-values method. 𝐶𝑆(𝜗) = −2ln(𝑚(𝑏𝑆(𝜗))), where 

 𝑚𝑆(𝑡) = inf
𝑧>0
𝑒−𝑧𝑡

1−𝑒−𝑧

𝑧
 

and  

 𝑏𝑆(𝜗) = 𝔼𝐻Λ (
𝑒Λ𝜗−Λ𝜗𝑒Λ𝜗−1

(𝑒Λ𝜗−1)
2 ). 

    4.   Inverse Normal method. 𝐶𝑁(𝜗) = −2ln(𝑚(𝑏𝑁(𝜗))) = 𝑏𝑁
2(𝜗),  

where  

 𝑏𝑁(𝜗) = −𝔼𝐻Λ (𝑒
Λ𝜗𝔼𝑁(0,1) {

𝑣

𝑀𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(2,Φ(𝑣))(𝜗)
}) 

Proof of B1. For Fisher procedure,  

 𝑇𝐹 = −2∑
𝑛
𝑖=1

ln[1−Ψ𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐(ln(𝑥))]

√𝑛
. 

By Theorem 2 (1) and by the strong law of large number (SLLN), we have  

 

 
𝑇𝐹

√𝑛

w.p.1
→   𝑏𝐹(𝜗) = −2𝔼

𝐻1ln[1 − Ψ𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐(ln(𝑥))] 

then  

 𝑏𝐹(𝜗) = −2𝔼𝐻Λ𝔼𝐿𝐿(Λ𝜗,1)(ln[1 − Ψ𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐(ln(𝑥))]|Λ). 

Now, 𝑏𝐹(𝜗) = −2𝔼𝐻Λ ∫
∞

0

1

𝑥
ln[1 − Ψ𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐(ln(𝑥))]𝜑𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐(ln(𝑥) − Λ𝜗) 𝑑𝑥 = 2𝔼𝐻Λ (

Λ𝜗

1−𝑒−Λ𝜗
).  

Now under 𝐻0, and by Theorem (1), it follows that 𝑀𝐹(𝑧) = 𝔼𝐹(𝑒
−2ln(𝑥)𝑧) = ∫

1

0
𝑒−2ln(𝑥)𝑧 𝑑𝑥. Set 𝑡 =

−ln(𝑥) implies 𝑑𝑡 = −𝑒𝑡𝑑𝑥. It then follows that 𝑀𝐹(𝑧) = ∫
1

0
𝑒−𝑥(1−2𝑡) 𝑑𝑥 = (1 − 2𝑧)−1, 𝑍 < 1/2. Then, 

𝑚𝐹(𝑡) = inf𝑧>0𝑒
−𝑧𝑡(1 − 2𝑧)−1 =

𝑡

2
𝑒1−𝑡/2, now by Bahadur’s Theorem (2), we complete the proof, that is  

𝐶𝐹(𝜗) = −2ln(𝑚𝐹(𝑏𝐹(𝜗))) = −2ln (
𝑏𝐹(𝜗)

2
𝑒1−

𝑏𝐹(𝜗)
2 ) = 𝑏𝐹(𝜗) − 2ln(𝑏𝐹(𝜗)) + 2ln(2) − 2. 

Proof of B2. Similar to the previous proof.  

Proof of B3. For sum of p-values procedure,  

 𝑇𝑆 = −∑
𝑛
𝑖=1

[1−Ψ𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐(ln(𝑥))]

√𝑛
. 

It follows from Theorem 2 (1) and by the strong law of large number (SLLN) that  

 
𝑇𝑆

√𝑛

w.p.1
→   𝑏𝑆(𝜃) = −𝔼

𝐻1 (1 − Ψ𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐(ln(𝑥))) 

then  

 𝑏𝑆(𝜗) = −𝔼𝐻Λ𝔼𝐸𝑉(Λ𝜗,1) {(1 − Ψ𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐(ln(𝑥))) |Λ} = 𝔼𝐻Λ (
𝑒Λ𝜗−Λ𝜗𝑒Λ𝜗−1

(𝑒Λ𝜗−1)
2 ). 

Now, by Theorem 1, we have 𝑚𝑆(𝑡) = inf𝑧>0𝑒
−𝑧𝑡𝑀𝑆(𝑧), where 𝑀𝑆(𝑧) = 𝔼𝐹(𝑒

𝑧𝑋).  

Under 𝐻0: − (1 − Ψ𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐(ln(𝑥))) ∼ 𝑈(−1,0), so 𝑀𝑆(𝑧) =
1−𝑒−𝑧

𝑧
, by part (2) of Theorem 2 we complete 

the proof, we conclude that 𝐶𝑆(𝜗) = −2ln(𝑚𝑆(𝑏𝑆(𝜗))).  
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For the inverse normal procedure, 𝑇𝑁 = −∑
𝑛
𝑖=1

Φ−1(1−Ψ𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐(ln(𝑥)))

√𝑛
. By Theorem 2 (1) and the strong law 

of large number (SLLN), we have 𝑛−
1

2𝑇𝑁
w.p.1
→   𝑏𝑁(𝜗) = −𝔼

𝐻1Φ−1 (1 − Ψ𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐(ln(𝑥))), 𝑏𝑁(𝜗) =

−𝔼𝐻Λ𝔼𝐸𝑉(Λ𝜗,1) {Φ
−1 (1 − Ψ𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐(ln(𝑥))) |Λ}, it follows that 𝑏𝑁(𝜗) = −𝔼𝐻Λ ∫

∞

0

1

𝑥
Φ−1(1 −

Ψ𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐(ln(𝑥)))𝜑𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐(ln(𝑥) − Λ𝜗) 𝑑𝑥 = −𝔼𝐻Λ ∫
∞

0
Φ−1 (

1

1+𝑥
)

𝑒Λ𝜗

(𝑥+𝑒Λ𝜗)
2  𝑑𝑥. On substituting 𝑣 =

Φ−1 (
1

1+𝑥
), implies 

1

1+𝑥
= Φ(𝑣), 

𝑑𝑥

𝑑𝑣
=

𝜙(𝑣)

Φ2(𝑣)
. It follows that 𝑏𝑁(𝜗) = 𝔼𝐻Λ ∫ℜ

−𝑒Λ𝜗𝑣𝜙(𝑣)

(1−Φ(𝑣)+Φ(𝑣)𝑒Λ𝜗)
2  𝑑𝑣 =

−𝔼𝐻Λ (𝑒
Λ𝜗𝔼𝑁(0,1) {

𝑣

𝑀𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(2,Φ(𝑣))(𝜗)
}). Now under 𝐻0, and by Theorem (1), it follows that 𝑀𝑁(𝑧) =

𝔼𝑁(𝑒
−𝑧Φ−1(𝑋)) = ∫

1

0
𝑒−𝑧Φ

−1(𝑋) 𝑑𝑥. Set 𝑤 = −Φ−1(𝑥) implies 𝑥 = 1 −Φ(𝑤), then 𝑑𝑥 = −𝜙(𝑤)𝑑𝑤. It 

then follows that 𝑀𝑁(𝑧) = ∫ℜ 𝑒
𝑤𝑧𝜙(𝑤) 𝑑𝑤 = 𝑀𝑁(0,1)(𝑧) = 𝑒

𝑧2/2. Then, 𝑚𝑁(𝑡) = inf𝑧>0𝑒
−𝑧𝑡𝑒𝑧

2/2 =

𝑒−𝑡
2/2, now by Bahadur’s Theorem (2) (2), we complete the proof, that is 𝐶𝑁(𝜗) = −2ln(𝑚𝑁(𝑏𝑁(𝜗))) =

−2ln(𝑒−𝑏𝑁
2 (𝜗)/2) = 𝑏𝑁

2(𝜗) = [𝔼𝐻Λ (𝑒
Λ𝜗𝔼𝑁(0,1) {

𝑣

𝑀𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(2,Φ(𝑣))(𝜗)
})]

2

.  

  

Theorem 9  Let 𝑈1, 𝑈2, … be i.i.d. like 𝑈 with probability density function 𝑓 and suppose that we want to 

test 𝐻0: 𝑈𝑖 ∼ 𝑈(0,1) vs 𝐻1: 𝑈𝑖 ∼ 𝑓 on (0,1) but not 𝑈(0,1). Then 𝐶𝑚𝑎𝑥(𝑓) = −2𝑙𝑛(𝑒𝑠𝑠. 𝑠𝑢𝑝𝑓(𝑢)) where 

𝑒𝑠𝑠. 𝑠𝑢𝑝𝑓(𝑢) = 𝑠𝑢𝑝{𝑢: 𝑓(𝑢) > 0} w.p.1 under 𝑓. Al-Masri [5]  

Lemma 3  

 𝐶𝑚𝑎𝑥(𝜗) = 0. 

Proof. Assume that 
𝑑

𝑑Λ
𝐻Λ = 𝑔Λ the probability density function of the DF 𝐻Λ, then the joint probability 

density function of 𝑋 and Λ is  

 ℎ(𝑥, Λ) = 𝑓(𝑥|Λ)𝑔Λ 

 ℎ(𝑥, Λ) =
1

𝑥
𝜑𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐(ln(𝑥) − Λ𝜗)𝐼ℝ+(𝑥). 

The marginal probability density function of 𝑋 is  

 𝑓(𝑥) =
1

𝑥
∫
(𝜅,∞)

𝜑𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐(ln(𝑥) − Λ𝜗) 𝑑Λ, 𝑥 ∈ ℜ
+, 𝜅 ≥ 0. 

Now, under 𝜗 the p-value 𝑃 = 1 − Ψ𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐(ln(𝑥)), so  

 ℎ(𝑝) = (𝑝 − 1)2 ∫
(𝜅,∞)

𝑒Λ𝜗

(𝑝−(𝑝−1)𝑒Λ𝜗)
2  𝑑Λ,   𝑝 ∈ (0,1). (4.2) 

 Then by Theorem 9 we have 𝑒𝑠𝑠. 𝑠𝑢𝑝𝑓(𝑝) = 1. Therefore, 𝐶𝑚𝑎𝑥(𝜗) = 0.  

Theorem 10  If 𝜋(𝑙𝑛𝜋)2𝑓(𝜋) → 0 as 𝜋 → 0, then 𝐶𝑇(𝑓) = 0. Al-Masri [5]  

Lemma 4  

 𝐶𝑇(𝜗) = 0. 
 

Proof. From (4.2) and by Theorem 10 we have get  

 lim
𝑝→0
𝑝(ln𝑝)2ℎ(𝑝) = −lim

𝑝→0
𝑝(ln𝑝)2(𝑝 − 1)2 ∫

(𝜅,∞)

𝑒Λ𝜗

(𝑝−(𝑝−1)𝑒Λ𝜗)
2  𝑑Λ. 

Clearly, applying by L’Hopital rule twice we have, lim𝑝→0𝑝(ln𝑝)
2 = 0, also, lim𝑝→0(𝑝 −

1)2 ∫
(𝜅,∞)

𝑒Λ𝜗

(𝑝−(𝑝−1)𝑒Λ𝜗)
2  𝑑Λ = 𝔼𝐻Λ(𝑒

−Λ𝜗). Which implies 𝐶𝑇(𝜗) = 0.  

  

5.  COMPARISON OF THE EBSS WHEN 𝝑 → 𝟎 

 

In this section, we will compare the EBSs that obtained in Section (4). We will find the limit of the ratio of 

the EBSs of any two methods when 𝜗 → 0.  

Corollary 2 The limits of ratios of different tests are as follows: 

C1. 
𝐶𝑇(𝜗)

𝐶𝔇(𝜗)
=
𝐶𝑚𝑎𝑥(𝜗)

𝐶𝔇(𝜗)
= 0, where 𝐶𝔇(𝜗) ∈ {𝐶𝐹(𝜗), 𝐶𝐿(𝜗), 𝐶𝑆(𝜗), 𝐶𝑁(𝜗)}.  

C2. 𝑒𝐵(𝑇𝑆, 𝑇𝐹) → 1.3333  

C3. 𝑒𝐵(𝑇𝐿 , 𝑇𝐹) → 1.21585  

C4. 𝑒𝐵(𝑇𝑁 , 𝑇𝐹) → 1.27324  
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C5. 𝑒𝐵(𝑇𝐿 , 𝑇𝑁) → 0.954926  

C6. 𝑒𝐵(𝑇𝑁 , 𝑇𝑆) → 0.95493  

C7. 𝑒𝐵(𝑇𝐿 , 𝑇𝑆) → 0.911888  

Proof of C2. By Lemma (2) (B1, B3) and Theorem (3)(1) it follows that 𝑏′𝐹(𝜗) = 2𝔼𝐻Λ (
Λ𝑒Λ𝜗(𝑒Λ𝜗−Λ𝜗−1)

(𝑒Λ𝜗−1)2
). 

Now, by L’Hopitals rule, we have lim𝜗→0𝑏′𝐹(𝜗) = 𝔼𝐻Λ(Λ) < ∞. Also lim𝜗→0𝑏′𝑆(𝜗) =

lim𝜗→0𝔼𝐻Λ [
Λ𝑒Λ𝜗(2+𝑒Λ𝜗(Λ𝜗−2)+Λ𝜗)

(𝑒Λ𝜗−1)3
] =

1

6
𝔼𝐻Λ(Λ) < ∞. Now under 𝐻0: ℎ𝐹(𝑥) = −2ln[1 − Ψ𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐(ln(𝑥))] ∼

𝜒2
2 and ℎ𝑆(𝑥) = −(1 − Ψ𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐(ln(𝑥))) ∼ 𝑈(−1,0), so 𝑉𝑎𝑟𝜗=0(ℎ𝐹(𝑥)) = 4 and 𝑉𝑎𝑟𝜗=0(ℎ𝑆(𝑥)) =

1

12
. 

By applying Theorem (3) we get lim𝜗→0
𝐶𝑆(𝜗)

𝐶𝐹(𝜗)
=
4

3
. Similarly we can prove other parts.  

  

6.  THE LIMITING RATIO OF THE EBS FOR DIFFERENT TESTS WHEN 𝝑 → ∞ 

 

Now, we will compare the limit of the ratio of EBSs for any two methods when 𝜗 → ∞.  

Corollary 3 The limits of ratios for different tests are as follows:  

D1. 𝑒𝐵(𝑇𝐿 , 𝑇𝐹) → 1  

 

D2. 𝑒𝐵(𝑇𝑆, 𝑇𝐹) → 0  

D3. 𝑒𝐵(𝑇𝑁 , 𝑇𝑆) → 0  

D4. lim𝜗→∞{𝐶𝐹(𝜗) − 𝐶𝐿(𝜗)} ≤ 0  

D5. 𝑒𝐵(𝑇𝑁 , 𝑇𝐿) → 0, 𝑒𝐵(𝑇𝑆, 𝑇𝐿) → 0.  

Proof of D1. By Lemma (1) part (1) 𝐶𝐿(𝜗) ≤ 2𝑏𝐿(𝜗). So  

 
𝐶𝐿(𝜗)

𝐶𝐹(𝜗)
≤

2𝑏𝐿(𝜗)

𝑏𝐹(𝜗)−2ln(𝑏𝐹(𝜗))+2ln(2)−2
. 

It is sufficient to obtain lim𝜗→∞
2𝑏𝐿(𝜗)

𝑏𝐹(𝜗)
.  

Therefore,  

 lim
𝜗→∞

2𝑏𝐿(𝜗)

𝑏𝐹(𝜗)
= − lim

𝜗→∞

𝔼𝐻Λ
(Λ)

𝔼𝐻Λ(
Λ

1−𝑒−Λ𝜗
)
= 1. 

So,  

 lim
𝜗→∞

𝐶𝐿(𝜗)

𝐶𝐹(𝜗)
≤ 1. 

Also, by Theorem (6) part (2), we have 𝐶𝐿(𝜗) ≥ 2𝑏𝐿(𝜗) − 2ln(𝑏𝐿(𝜗)) − 2. So  

 lim
𝜗→∞

𝐶𝐿(𝜗)

𝐶𝐹(𝜗)
≥ lim
𝜗→∞

2𝑏𝐿(𝜗)−2ln(𝑏𝐿(𝜗))−2

𝑏𝐹(𝜗)−2ln(𝑏𝐹(𝜗))+2ln(2)−2
. 

It is sufficient to obtain the limit of lim𝜗→∞
2𝑏𝐿(𝜗)

𝑏𝐹(𝜗)
.  

Therefore,  

 lim
𝜗→∞

2𝑏𝐿(𝜗)

𝑏𝐹(𝜗)
= − lim

𝜗→∞

𝔼𝐻Λ
(Λ)

𝔼𝐻Λ(
Λ

1−𝑒−Λ𝜗
)
= 1. 

Then,  

 lim
𝜗→∞

𝐶𝐿(𝜗)

𝐶𝐹(𝜗)
≥ 1 

Thus, by pinching theorem, we have lim𝜗→∞
𝐶𝐿(𝜗)

𝐶𝐹(𝜗)
= 1.  

Proof of D2. By Lemma (1) part (3) 𝐶𝑆(𝜗) ≤ −2ln(2) − 2ln(−𝑏𝑆(𝜗)). So  

 lim
𝜗→∞

𝐶𝑆(𝜗)

𝐶𝐹(𝜗)
≤ lim
𝜗→∞

−2ln(2)−2ln(−𝑏𝑆(𝜗))

𝑏𝐹(𝜗)−2ln(𝑏𝐹(𝜗))+2ln(2)−2
. 

It is sufficient to obtain the limit of lim𝜗→∞
−2ln(−𝑏𝑆(𝜗))

𝑏𝐹(𝜗)
. Then  

 lim
𝜗→∞

−2ln(−𝑏𝑆(𝜗))

𝑏𝐹(𝜗)
= lim
𝜗→∞

−ln(𝔼𝐻Λ(
Λ𝜗𝑒Λ𝜗−𝑒Λ𝜗+1

(𝑒Λ𝜗−1)
2 ))

𝜗𝔼𝐻Λ(
Λ

1−𝑒−Λ𝜗
)

. 

Now, by Jensen’s inequality where the logarithm is concave function, then −ln(𝔼𝐻Λ (
Λ𝜗𝑒Λ𝜗−𝑒Λ𝜗+1

(𝑒Λ𝜗−1)
2 )) ≤
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𝔼𝐻Λln (
(𝑒Λ𝜗−1)

2

Λ𝜗𝑒Λ𝜗−𝑒Λ𝜗+1
), so lim𝜗→∞

−2ln(−𝑏𝑆(𝜗))

𝑏𝐹(𝜗)
≤ lim𝜗→∞

𝔼𝐻Λln(
(𝑒Λ𝜗−1)

2

Λ𝜗𝑒Λ𝜗−𝑒Λ𝜗+1
)

𝜗𝔼𝐻Λ(
Λ

1−𝑒−Λ𝜗
)

. Now by Lemma (1) part (1) we 

get lim𝜗→∞
−2ln(−𝑏𝑆(𝜗))

𝑏𝐹(𝜗)
≤ lim𝜗→∞

𝔼𝐻Λ(
(𝑒Λ𝜗−1)

2

Λ𝜗𝑒Λ𝜗−𝑒Λ𝜗+1
−1)

𝜗𝔼𝐻Λ(
Λ

1−𝑒−Λ𝜗
)

= 0. Therefore, lim𝜗→∞
𝐶𝑆(𝜗)

𝐶𝐹(𝜗)
= 0.  

Proof of D3. From B4 we have 𝐶𝑁(𝜗) = [𝔼𝐻Λ (𝑒
Λ𝜗𝔼𝑁(0,1) {

𝑣

𝑀𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(2,Φ(𝑣))(𝜗)
})]

2

. By Lemma (1) part (3) 

we get 𝐶𝑆(𝜗) ≥ −2 − 2ln(−𝑏𝑆(𝜗)), now by Theorem (7) and Theorem (8), we have lim𝜗→∞
𝐶𝑁(𝜗)

𝐶𝑆(𝜗)
≤

lim𝜗→∞

[𝔼𝐻Λ(𝑒
Λ𝜗𝔼𝑁(0,1){

𝑣

𝑀𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(2,Φ(𝑣))(𝜗)
})]

2

−2−2ln[−𝔼𝐻Λ(
𝑒Λ𝜗−Λ𝜗𝑒Λ𝜗−1

(𝑒Λ𝜗−1)
2 )]

= 0. Therefore, lim𝜗→∞
𝐶𝑁(𝜗)

𝐶𝑆(𝜗)
= 0.  

  

Proof of D4. By Theorem 6 (2), we have  

 𝐶𝐹(𝜗) − 𝐶𝐿(𝜗) ≤ 𝑏𝐹(𝜗) − 2ln𝑏𝐹(𝜗) + 2ln(2) + 2ln𝑏𝐿(𝜗) − 2𝑏𝐿(𝜗) 
 

 = 𝑏𝐹(𝜗) − 2𝑏𝐿(𝜗) + 2ln (
𝑏𝐿(𝜗)

𝑏𝐹(𝜗)
) + 2ln(2). 

Now,  𝑏𝐹(𝜗) − 2𝑏𝐿(𝜗) = 2𝜗𝔼𝐻Λ (
Λ

𝑒Λ𝜗−1
). 

Also,  lim
𝜗→∞

𝑏𝐿(𝜗)

𝑏𝐹(𝜗)
= lim
𝜗→∞

𝜗𝔼𝐻Λ
(Λ)

2𝜗𝔼𝐻Λ(
Λ

1−𝑒−Λ𝜗
)
=
1

2
. 

Then,  

 lim
𝜗→∞

(𝐶𝐹(𝜗) − 𝐶𝐿(𝜗)) ≤ lim
𝜗→∞

(𝑏𝐹(𝜗) − 2ln𝑏𝐹(𝜗)) + 2 lim
𝜗→∞

ln (
𝑏𝐿(𝜗)

𝑏𝐹(𝜗)
) + 2ln(2) = 0 − 2ln(2) + 2𝑙𝑛(2) = 0. 

So, 𝐶𝐹(𝜗) ≤ 𝐶𝐿(𝜗) for large 𝜗.  

Proof of D5. Straight forward by using D1 to D3.  

  

7.  CONCLUSION 

 

In this section we will compare the EBS for the six combination producers. From the relations in section (6) 

we conclude that locally as   𝜗 → 0, the sum of p-values procedure is better than all other procedures since it 

has the highest EBS, followed in decreasing order by the inverse normal, logistic procedure and the Fisher’s 

procedure. The worst two are the Tippett’s and the maximum of p-values procedures, i.e,  

 𝐶𝑆(𝜗) > 𝐶𝑁(𝜗) > 𝐶𝐿(𝜗) > 𝐶𝐹(𝜗) > 𝐶𝑇(𝜗) = 𝐶𝑚𝑎𝑥(𝜗). 
Whereas, from result of Section (6.1) as   𝜗 → ∞ the worst methods are Tippett’s and the maximum of p-

values. The logistic is better than all other procedures, followed in decreasing order by Fisher’s procedure, 

sum of p-values and the inverse normal procedures, i.e,  

 𝐶𝐿(𝜗) > 𝐶𝐹(𝜗) > 𝐶𝑆(𝜗) > 𝐶𝑁(𝜗) > 𝐶𝑇(𝜗) = 𝐶𝑚𝑎𝑥(𝜗). 
RECEIVED: MARCH, 2021. 

REVISED: DECEMBER, 2021. 
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