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ABSTRACT 
In this article, we will consider the problem of estimating the cumulative distribution function (CDF) and the odds measure 

under moving extreme ranked set sampling. Using maximum likelihood method and local polynomial regression approach, 

new intuitive and easy-to-implement nonparametric estimators of the CDF and the odds are derived. It has been proved that 
the proposed estimators are consistent estimators. Simulated and empirical data are subsequently used to evaluate the 

performances of the newly proposed estimators. The numerical results provide that the proposed estimators are much more 

efficient than their alternatives at the center and the upper tail of the parent distribution even when the rankings are not 
perfect. 

 

KEYWORDS: Moving Extreme Ranked Set Sampling, Distribution Function, Local Polynomial Regression, Odds 
Function, Ranking Errors. 

 

MSC: 62D05, 62F03. 

 

RESUMEN 

En este artículo, consideraremos el problema de estimar la función de distribución acumulativa  (CDF) y la medida de los 

odds bajo muestreo por conjuntos ordenados  extremales. Usando el método de  Máxima Verosimilitud y el enfoque de la 

regresión local  polinomial, nuevos estimadores intuitivos y fáciles de  implementar de la  CDF y de los  odds son 
derivados. Ha sido  proveído que los  propuestos estimadores son consistentes. Son usados simulados y  empíricos  

subsecuentemente para evaluar el comportamiento de los nuevos estimadores propuestos. Los resultados  numéricos 

soportan que los  propuestos estimadores son mucho más  eficientes que  sus alternativas en el centro y en la cola superior 
de la distribución de origen, incluso si el rankeo es no perfecto. 

 

PALABRAS CLAVE: Muestreo Móvil por Conjuntos Ordenados Extremal, Función de Distribución, Regresión Local 
Polinomial, Función Odds, Errores en en Rankeo. 

 

1. INTRODUCTION  

 

Moving extreme ranked set sampling (MERSS) is a sampling strategy proposed by Al-Odat and Al-Saleh 

(2000) for estimating the population mean as an alternative sampling technique to the conventional 

ranked set sampling (RSS) scheme. To attain MERSS, one can act the following steps: 

1. Randomly draw 𝑘 sets of sizes 1, 2, . . . , 𝑘 from the interested population. 

2. Exactly quantify the maximum ordered sampling unit from each set sample. 

3. Repeat the preceding steps, if needed, 𝑚 times (cycles) to get a sample of size 𝑛 = 𝑘𝑚 for actual quantification. 

Let 𝑌𝑖[1:𝑘]𝑗 , 𝑌𝑖[2:𝑘]𝑗 …𝑌𝑖[𝑘:𝑘]𝑗 be the judgment order statistics of the 𝑖𝑡ℎ sample (𝑖 = 1,2, … 𝑘, ) in the 𝑗𝑡ℎ 

cycle (𝑗 = 1,2, … ,𝑚). Then {𝑌𝑖[𝑖:𝑖]𝑗:   𝑖 = 1,2, … 𝑘 ;  𝑗 = 1,2, … ,𝑚} are denoted to the MERSS. The term 

judgment (subjective) order statistic and square brackets [.] are used to emphasis that the ranking process 

may not be completely accurate, i.e. the sampling units can be ranked with errors. This situation is known 

as imperfect ranking. Perfect ranking, however, is a situation in which the judgment rank of each unit 

matches with its actual rank, and hence the square brackets [.] can be replaced with the round ones (.). It 

is interesting to note here that for each 𝑖, the measured units {𝑌𝑖(𝑖:𝑖)1, 𝑌𝑖(𝑖:𝑖)2…𝑌𝑖(𝑖:𝑖)𝑚} are independent and 

identically distributed (iid) random variables. While for each 𝑗, {𝑌1(1:1)𝑗 , 𝑌2(2:2)𝑗 , … , 𝑌𝑘(𝑘:𝑘)𝑗} are only 

independent random variables.  

Despite the superiority of RSS over MERSS in estimating several population parameters, there are many 

considerations which make MERSS a desirable choice for many practitioners. One can justify this 
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preference as MERSS depends only on 
𝑘(𝑘−1)

2
×𝑚 sample units to get a sample of size 𝑛, yet RSS needs 

𝑘2 ×𝑚 sample units to obtain the same sample size. In addition, MERSS can practically be preferable as 

identifying the maximum/minimum rank is much easier than determining the intermediate ranks.  

Consequently, research literature in MERSS has expanded rapidly in the last two decades, among which 

we can briefly cite Al-Saleh and Al-Hadhrami (2003) and Al-Omari (2021) regarding to parametric 

inference about the population parameters, Al-Saleh and Al-Ananbeh (2005), relating to estimation of 

correlation coefficient under the bivariate normal distribution, Al-Omari (2015, 2016), Zamanzade et al. 

(2020) and Al-Omari and Abdallah (2021), respecting to estimation of cumulative distribution function 

(CDF), Rahmani and Razmkhah (2017), for testing the quality ranking, and Zamanzade and Mahdizadeh 

(2020), concerning to nonparametric estimation about the population proportion. For other interesting 

studies of MERSS can be found in the monograph of Bouza and Al-Omari (2019) and the references cited 

therein. 

One of the most commonly used technique in the area of nonparametric analysis is Local polynomial 

regression (LPR). Stone (1977) was the first to suggest the use of the LPR for discovering the association 

between dependent and independent variables. The idea behind LPR is that any function can be well 

approximated in some neighborhood points by a low-order polynomial and that simple model can be 

fitted to data easily leads to a smooth function over the support of the data. Further information can be 

found in Fan and Gijbels (1996). 

According to our best knowledge, despite the superiority and the popularity of the LPR in estimating 

several statistical measures, for interesting examples see Jayasinghe and Zeephongsekul (2012) and 

Cattaneo, et al. (2019), no works in the literature have so far carried out on LPR under MERSS. To fill 

this gap, this work aims to incorporate LPR in estimating the CDF and the odds measure under MERSS. 

The layout of this study is organized as follows: Section 2 provides the CDF estimator introduced by Al-

Saleh and Ahmad (2019) as well as our proposed one. The odds estimator introduced by Al-Saleh and 

Samawi (2010) as well as our novel ones are explained in Section 3. A comparison study between the 

proposed procedures with their competitors is studied in Section 4. In Section 5, the findings are 

illustrated using real data example. Eventually, some concluding remarks and future research points 

appear in Section 6.  

2. ESTIMATION OF CDF USING MERSS 

The problem of the CDF is a comprehensively studied work in a nonparametric analysis because through 

CDF, one can identify a lot about the population properties, such as odds, hazard, entropy…etc. In this 

part, we will address the CDF estimator under MERSS published by Al-Saleh and Ahmed (2019), then 

we will modify this estimator using LPR model. 

2.1 Al-Saleh and Ahmad (2019) ’s CDF estimator 

Recall again that {𝑌𝑖(𝑖:𝑖)𝑗:   𝑖 = 1,2, …𝑘 ;  𝑗 = 12, … ,𝑚} are MERSS drawn from a population with the 

probability density function (pdf) 𝑓(.) and CDF 𝐹(.). Al-Saleh and Ahmad (2019) used the maximum 

likelihood estimation (MLE) method for estimating 𝐹(𝑦) based on MERSS. Their idea is based on the 

fact that {𝐼(𝑌𝑖(𝑖:𝑖)1 ≤ 𝑦), 𝐼(𝑌𝑖(𝑖:𝑖)2 ≤ 𝑦)… 𝐼(𝑌𝑖(𝑖:𝑖)𝑚 ≤ 𝑦)} are iid each has a Bernoulli distribution with 

success probability 𝐵𝑖,1(𝐹(𝑦)), where 𝐼(.) is the indicator function and 𝐵𝑎,𝑏(𝑦) is the CDF of the Beta 

distribution with parameters 𝑎 and 𝑏 at point 𝑦. Let  𝑌𝑖 = ∑ 𝐼(𝑌𝑖(𝑖:𝑖)𝑗 ≤ 𝑦)
𝑚
𝑗=1 , 𝑖 = 1, … , 𝑘. Then 𝑌𝑖s are 

independent random variables each with binomial distribution with mass parameter 𝑚, and success 

probability 𝐵𝑖,1(𝐹(𝑦)). Hence the corresponding likelihood function of 𝑌𝑖s is: 

𝐿(𝐹|𝑌) =∏(
𝑚

𝑌𝑖
)

𝑘

𝑖=1

(𝐵𝑖,1(𝐹(𝑦)) )
𝑌𝑖
(1 − 𝐵𝑖,1(𝐹(𝑦)))

𝑚−𝑌𝑖
. 

The CDF estimator intuitively can be obtained by maximizing 𝐿(𝐹|𝑌) or equivalently maximizing 

log 𝐿(𝐹|𝑌) as shown below: 
𝐹̂(𝑦) = argmax

𝐹∈[0,1]
log 𝐿(𝐹|𝑌) . 

Based on simulation studies, Al-Saleh and Ahmad (2019) concluded, and also confirmed later by 

Zamanzade et al. (2020), that 𝐹̂(𝑦) is the best one compared to its competitors at the upper tail of the 

population of the distribution provided that the perfectness assumption is assumed. 
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Remark 𝟏: Zamanzade et al. (2020) stated, under the perfectness, that 
𝐹̂(𝑦)−𝐹(𝑦)

𝑉𝑎𝑟(𝐹̂(𝑦))

𝑝
→𝑁(0,1), where 

𝑉𝑎𝑟 (𝐹̂(𝑦)) = −(𝐸 (
𝑑2 log 𝐿(𝐹|𝑌)

𝑑𝐹2
))

−1

= (∑
𝑚(𝑏𝑖,1(𝐹(𝑦)))

2
 

𝐵𝑖,1(𝐹(𝑦))(1−𝐵𝑖,1(𝐹(𝑦)))

𝑘
𝑖=1 )

−1

, 𝑏𝑎,𝑏(𝑦) is pdf of the Beta 

distribution with parameters 𝑎 and 𝑏 at the point 𝑦 and 
𝑝
→ indicates convergence in probability. 

  

2.2 Proposed CDF estimator 

Since the CDF enjoys with an important property, as it is sufficiently smooth function leads its 

derivatives are typically exist. Using Taylor Series expansion, 𝐹(𝑦)  can be linearized as:  

𝐹(𝑦) ≈ 𝐹(𝑦∗) + 𝐹(1)(𝑦∗)(𝑦 − 𝑦∗) +
𝐹(2)(𝑦∗)

2!
(𝑦 − 𝑦∗)2 +⋯+

𝐹(𝑝)(𝑦∗)

𝑝!
(𝑦 − 𝑦∗)𝑝,                                                                (1) 

where ≈ indicates approximate equality, 𝐹(𝑗)(𝑦∗) =
𝑑𝐹(𝑦)

𝑑𝑦
|
𝑦=𝑦∗

 𝑗 = 1,2, … , 𝑝, and 𝑦∗ is an observation 

from the data neighborhood around 𝑦. Since 𝐹(𝑦) is unknown, then (1) can be rewritten as: 

𝐹(𝑦∗) ≈ 𝐹(𝑦) + 𝐹(1)(𝑦∗)(𝑦∗ − 𝑦) +
𝐹(2)(𝑦∗)

2!
(𝑦∗ − 𝑦)2 +⋯+

𝐹(𝑝)(𝑦∗)

𝑝!
(𝑦∗ − 𝑦)𝑝.                                                                  (2) 

since we need all the sampling units share in estimating 𝐹(𝑦), then (2) becomes: 

𝐹(𝑌𝑖[𝑖:𝑖]𝑗) ≈ 𝐹(𝑦) + 𝐹
(1)(𝑌𝑖[𝑖:𝑖]𝑗)(𝑌𝑖[𝑖:𝑖]𝑗 − 𝑦) +

𝐹(2)(𝑌𝑖[𝑖:𝑖]𝑗)

2!
(𝑌𝑖[𝑖:𝑖]𝑗 − 𝑦)

2
+⋯+

𝐹(𝑝)(𝑌𝑖[𝑖:𝑖]𝑗)

𝑝!
(𝑌𝑖[𝑖:𝑖]𝑗 − 𝑦)

𝑝
.  𝑖 = 1,2,…𝑘 ; j = 1,2,…m (3)  

which is equivalent to: 

𝐹(𝑌𝑖(𝑖:𝑖)𝑗) ≈ 𝛽𝑜 + 𝛽1(𝑌𝑖(𝑖:𝑖)𝑗 − 𝑦) + 𝛽2(𝑌𝑖(𝑖:𝑖)𝑗 − 𝑦)
2
+⋯+ 𝛽𝑝(𝑌𝑖(𝑖:𝑖)𝑗 − 𝑦)

𝑝
,                 (4) 

where 𝛽𝑗 =
𝐹(𝑗)(𝑌𝑖(𝑖:𝑖)𝑗)

𝑗!
   𝑗 = 0,1, … , 𝑝. 

By estimating 𝐹(𝑌𝑖(𝑖:𝑖)𝑗) with 𝐹̂(𝑌𝑖(𝑖:𝑖)𝑗), (4) will become: 

𝐹̂(𝑌𝑖(𝑖:𝑖)𝑗) ≈ 𝛽𝑜 + 𝛽1(𝑌𝑖(𝑖:𝑖)𝑗 − 𝑦) + 𝛽2(𝑌𝑖(𝑖:𝑖)𝑗 − 𝑦)
2
+⋯+ 𝛽𝑝(𝑌𝑖(𝑖:𝑖)𝑗 − 𝑦)

𝑝
,                                                                                              (5) 

It is obvious that (5) is similar to the standard linear regression equation and hence the unknown 

coefficients, 𝛽’s, can be estimated by ordinary least square (OLS). According to Fan and Gijbels (1996), 

we need only points within a neighborhood of 𝑦 are given higher weights than the remaining. 

Alternatively, weighted least square (WLS) method is adopted and the unknown coefficients in (4) can 

be estimated as:  

𝛽̂ =

(

 
 
𝛽̂𝑜
𝛽̂1
⋮
𝛽̂𝑝)

 
 
= (𝑌𝑇𝑊𝑌)−1𝑌𝑇𝑊𝐹̂,                                                   (6) 

where 𝑌 =

(

 
 
 

1 (𝑌1(1:1)1 − 𝑦) ⋯ (𝑌1(1:1)1 − 𝑦)
𝑝

⋮ ⋮ ⋯ ⋮

⋮ (𝑌𝑘(𝑘:𝑘)1 − 𝑦) ⋯ (𝑌𝑘(𝑘:𝑘)1 − 𝑦)
𝑝

⋮ ⋮ ⋯ ⋮

1 (𝑌𝑘(𝑘:𝑘)𝑚 − 𝑦) ⋯ (𝑌𝑘(𝑘:𝑘)𝑚 − 𝑦)
𝑝
)

 
 
 

, 𝐹̂ =

(

  
 

𝐹̂(𝑌1(1:1)1)

⋮
𝐹̂(𝑌𝑘(𝑘:𝑘)1)

⋮
𝐹̂(𝑌𝑘(𝑘:𝑘)𝑚))

  
 

, 

𝑊 = diag (
1

ℎ
𝐾 (

𝑌𝑖(𝑖:𝑖)𝑗−𝑦

ℎ
))  𝑖 = 1…𝑘 ;  𝑗 = 1…𝑚, 𝐾(.) denotes a kernel function assigns the weights and 

ℎ is the bandwidth controls the size of the neighborhood points around 𝑦. Comparing (5) with (3), one 

can conclude that 𝐹(𝑦) can be estimated by 𝛽̂𝑜, and hence the proposed CDF estimator can be formulated 

as 𝐹̃(𝑦) = 𝑒1𝛽̂ = 𝛽̂𝑜 = 𝑒1(𝑌
𝑇𝑊𝑌)−1𝑌𝑇𝑊𝐹̂, where 𝑒1 = (1 0 ⋯ 0) is the first (𝑝 +  1)-

dimensional unit row vector.  

Remark 𝟐: It is worth noting that 𝑌𝑇𝑊𝑌 is invertible if rank(𝑌𝑇𝑊𝑌) = 𝑝 + 1. This needs that 

rank(𝑊𝑌) = 𝑝 + 1. Since 𝑌 is a full column rank matrix as its columns are everywhere linearly 

independent. Hence, we can almost sure that 𝑋𝑇𝑊𝑋 is an invertible matrix if 𝑊 is also a full column rank 

matrix. 

It is observed that the idea behind our proposed estimator, 𝐹̃(𝑦), is to take the estimator, 𝐹̂(𝑦), introduced 

by Al-Saleh and Ahmad (2019) as a starting point, then obtain a smooth local approximation estimator 

using a polynomial expansion. As expectedly, the performance of  𝐹̃(𝑦) will strongly depend on 𝐹̂(𝑦). 
The following proposition shows that 𝐹̃(𝑦) is a consistent estimator to 𝐹(𝑦). 

Proposition 𝟏. Let {𝑌𝑖(𝑖:𝑖)𝑗: 𝑖 = 1,2, … , 𝑘; 𝑗 = 1,2, … ,𝑚} be a perfect MERSS and 𝑌𝑇𝑊𝑌 be a full column 

rank, then sup
𝑦
|𝐹̃(𝑦) − 𝐹(𝑦)| → 0 as n → ∞. 

Proof.  
sup
𝑦
|𝐹̃(𝑦) − 𝐹(𝑦)| = sup

𝑦
|𝑒1𝛽̂ − 𝑒1𝛽| = 𝑒1 sup

𝑦
|(𝑌𝑇𝑊𝑌)−1𝑌𝑇𝑊(𝐹̂ − 𝑌𝛽)| = 𝑒1(𝑌

𝑇𝑊𝑌)−1𝑌𝑇𝑊sup
𝑦
|𝐹̂ − 𝑌𝛽|. 
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In the light of the Remark 1 and from (4), the proof completes. 

It is clear that 𝐹̃(𝑦) has a practical problem for which it depends on unknown quantities to be estimated. 

First, the degree of the local polynomial, 𝑝, has a strong influence on the quality of the fitted regression. 

As, large (small) values provide less (greater) bias with large (less) variability in the estimates. According 

to Cattaneo, et al. (2019), being 𝑝 = 2 gives a good approximation to the underlying function with 

reasonable precise fitting. Therefore, hereafter, we will set 𝑝 = 2. For choosing the kernel function, it has 

been shown that the kind of the kernel function has much less effect on the performance of the estimator. 

However, those with bounded support are most commonly used. Toward this end, Epanechnikov kernel 

function is adopted.  

Due to its role in controlling the smoothness of the fit, the most important factor which has a critical 

effect on the estimates shown in (6) is the bandwidth, ℎ, selection. There, therefore, exist several 

automatic schemes for choosing ℎ. An easy popular choice is the nearest-neighbor bandwidth method. 

The main advantages of this method are it is intuitive, not required heavy computations and avoiding 

plug-in estimates. For further discussion, reader can refer to Loader (1999).  The steps of the nearest 

neighbor bandwidth method can be explained as follows: 

1. Compute the distances between the point 𝑦 and all the data points, i.e.  𝑑(𝑌𝑖(𝑖:𝑖)𝑗 − 𝑦) = |𝑌𝑖(𝑖:𝑖)𝑗 − 𝑦|   𝑖 = 1,2,… , 𝑘 ;  𝑗 =

1,2,… ,𝑚. 

2. Choose the bandwidth, denoted by ℎ̂1, to be the 𝑞𝑡ℎ smallest distance obtained in step 1, where 𝑞 = ⌊𝛼𝑛⌋, ⌊𝑥⌋ is integer 

part of 𝑥, 𝛼 is the selected percentage such that minimizes the cross-validation (CV) index: 

𝐶𝑉(𝛼) =
1

𝑛
∑ ∑ (𝐹̂(𝑌𝑖(𝑖:𝑖)𝑗) − ∑ 𝛽̂𝑡

−𝑌𝑖[𝑖:𝑖]𝑗
(𝑌𝑖(𝑖:𝑖)𝑗 − 𝑦)

𝑡𝑝
𝑡=0 )

2
𝑚
𝑗=1

𝑘
𝑖=1 and 𝛽̂𝑡

−𝑌𝑖[𝑖:𝑖]𝑗
 is the estimate of regression coefficient in 

(6) without observation 𝑌𝑖[𝑖:𝑖]𝑗. 

Remark 𝟑: It is interesting to highlight that the proposed estimator shown in (5), 𝛽̂, is not only a benefit 

for estimating the CDF, 𝛽̂0, but also for estimating the pdf. As, 𝛽̂1 can be considered as a density 

estimator under MERSS. More discussion about density estimation can be found in Cattaneo, et al. 

(2019). 

3. ESTIMATION OF ODDS BASED ON MERSS 

The odds is sometimes a better measure than the CDF to represent chance, it has a crucial important role 

in several statistical disciplines such as linear models, especially logistic regression models, and survival 

analysis. For a random variable 𝑌, the odds measure, denoted by 𝑂(𝑦𝑜), is defined as 𝑂(𝑦) =
𝐹(𝑦)

1−𝐹(𝑦)
 , 

Obviously, 𝑂(𝑦) ≥ 0 and it is a strictly monotone increasing function of 𝑦.  Additionally, 𝑂(𝑦) is finite 

until 𝐹(𝑦) < 1. Therefore, we will assume, throughout this study, that 𝐹(𝑦) < 1. In this part, we will 

address the odds estimator under MERSS published by Al-Saleh and Samawi (2010), then our proposed 

estimators using MLE and LPR model are presented.  

3.1. Al-Saleh and Samawi’s odds estimator  

Al-Saleh and Samawi (2010) constructed their odds estimator based on the fact that the sum of a 

geometric series, for any 𝑔(𝑦) ∈ (0,1), could be expressed as: 

∑(𝑔(𝑦))𝑖
∞

𝑖=1

=
𝑔(𝑦)

1 − 𝑔(𝑦)
.                                                    (7) 

Recall that the CDF of 𝑌𝑖(𝑖:𝑖)𝑗 at point 𝑦 is given by: 

𝐹(𝑖:𝑖)(𝑦) = ∫𝑓(𝑖:𝑖)(𝑢)

𝑦

0

𝑑𝑢 = ∫ 𝑖𝐹(𝑢)𝑖−1𝑓(𝑢)

𝑦

0

𝑑𝑢 = 𝐹(𝑦)𝑖 ,                                 (8) 

where 𝑓(𝑖:𝑖)(𝑢) is the pdf of 𝑖𝑡ℎ order statistics from the sample of size 𝑖. By replacing 𝑔(.) in (7) with 

𝐹(𝑖:𝑖)(.), we can obtain: 

∑𝐹(𝑖:𝑖)(𝑦)

∞

𝑖=1

=∑(𝐹(𝑦))𝑖
∞

𝑖=1

=
𝐹(𝑦)

1 − 𝐹(𝑦)
= 𝑂(𝑦).                         (9) 

Consequently, the suggested estimator of Al-Saleh and Samawi (2010), denoted by 𝑂̂(𝑦), can be obtained 

as first estimating 𝐹(𝑖:𝑖)(𝑦) with:  

𝐹̂(𝑖:𝑖)(𝑦) =
1

𝑚
∑𝐼(𝑌𝑖(𝑖:𝑖)𝑗 ≤ 𝑦)

𝑚

𝑗=1

.                                              (10) 

then plugging (10) in (9) with restricting the summation of 𝑖 to 𝑘, as shown below: 

𝑂̂(𝑦) =∑𝐹̂(𝑖:𝑖)(𝑦)

𝑘

𝑖=1

=
1

𝑚
∑∑𝐼(𝑌𝑖(𝑖:𝑖)𝑗 ≤ 𝑦)

𝑚

𝑗=1

𝑘

𝑖=1

. 
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The following proposition shows that 𝑂̂(𝑦) is a consistent estimator to 𝑂(𝑦). 

Proposition 𝟐. Let {𝑌𝑖(𝑖:𝑖)𝑗: 𝑖 = 1,2, … , 𝑘; 𝑗 = 1,2, … ,𝑚} be a perfect MERSS and 𝐹(𝑦) < 1, then 

sup
𝑦
|𝑂̂(𝑦) − 𝑂(𝑦)| → 0 as 𝑘 → ∞ and 𝑚 → ∞. 

Proof. 

 It is proven by Al-Saleh and Samawi (2010) that: 

Bias (𝑂̂(𝑦)) = 𝑂(𝑦)(𝐹(𝑦))𝑘 and 𝑉𝑎𝑟 (𝑂̂(𝑦)) =
1

𝑚
(𝑂(𝑦)

(1−(𝐹(𝑦))𝑘)(1−(𝐹(𝑦))𝑘+1)

1+𝐹(𝑦)
). 

Since MSE (𝑂̂(𝑦)) = Var (𝑂̂(𝑦)) + (Bias (𝑂̂(𝑦)))
2

, where MSE refers to the mean square error. Hence 

lim
𝑘,𝑚→∞

MSE (𝑂̂(𝑦)) = 0, for which the proof completes. 

3.1 . Modified Al-Saleh and Samawi’s odds estimator  

In this part, we plan to use the CDF estimators described in the preceding section to construct new odds 

estimators. In the light of (8), one can write:  

𝐹(𝑖:𝑖)(𝑦) = ∫ 𝑖𝐹(𝑢)
𝑖−1𝑓(𝑢)

𝑦

0

𝑑𝑢 = 𝐵𝑖,1(𝐹(𝑦)).                                     (11) 

and hence 𝑂(𝑦) can be rewritten as: 𝑂(𝑦) = ∑ 𝐹(𝑖:𝑖)(𝑦)
∞
𝑖=1 = ∑ 𝐵𝑖,1(𝐹(𝑦))

∞
𝑖=1 . 

Consequently, our first proposed odds estimator, denoted by 𝑂̂1(𝑦), can be constructed as estimating 

𝐹(𝑖:𝑖)(𝑦) with, see (11),:  

𝐹̃(𝑖:𝑖)(𝑦) = 𝐵𝑖,1 (𝐹̂(𝑦)).                                              (12) 

then plugging (12) in (9) with restricting the summation of 𝑖 to 𝑘, as shown below: 

𝑂̂1(𝑦) =∑𝐹̃(𝑖:𝑖)(𝑦)

𝑘

𝑖=1

=∑𝐵𝑖,1 (𝐹̂(𝑦))

𝑘

𝑖=1

. 

Of course, 𝐹(𝑖:𝑖)(𝑦) can also be estimated in terms with 𝐹̃(𝑦) rather than 𝐹̂(𝑦). This leads to our second 

proposed odds estimator takes the form: 𝑂̂2(𝑦) = ∑ 𝐵𝑖,1 (𝐹̃(𝑦))
𝑘
𝑖=1 . 

The consistency of 𝑂̂1(𝑦) as well as 𝑂̃1(𝑦) is shown by the following proposition.  

Proposition 𝟑. Let {𝑌𝑖(𝑖:𝑖)𝑗: 𝑖 = 1,2, … , 𝑘; 𝑗 = 1,2, … ,𝑚} be a perfect MERSS and 𝐹(𝑦) < 1, then as 𝑘 →

∞, we have: 
(𝑎) sup

𝑦
|𝑂̂1(𝑦) − 𝑂(𝑦)| → 0.  

(𝑏) sup
𝑦
|𝑂̂2(𝑦) − 𝑂(𝑦)| → 0.  

Proof. (𝑎) In the light of Remark 1, 𝑂̂1(𝑦)
𝑝
→∑ 𝐵𝑖,1(𝐹(𝑦))

𝑘
𝑖=1 . By comparing (11) with (8), we can get: 

𝑂̂1(𝑦)
𝑝
→∑𝐹(𝑦)𝑖

𝑘

𝑖=1

= 𝑂(𝑦)        as 𝑘 → ∞.  

which completes the proof. 

(𝑏) From Proposition 1, it is shown that 𝐹̃(𝑦) is a consistent estimator to 𝐹(𝑦). Hence the proof can be 

done in the same way presented in (𝑎).  

4. MONTE CARLO COMPARISONS 

In this part, the performance of the proposed procedures in different designs is conducted in terms of the 

relative efficiency (RE) criterion. The RE of 𝐹̃(𝑦) to 𝐹̂(𝑦) can be defined as: 

𝑅𝐸1(𝐹̃(𝑦)) =
𝑀𝑆𝐸(𝐹̃(𝑦))

𝑀𝑆𝐸(𝐹̂(𝑦))
 .                                        (13) 

Analogously, The RE of the proposed odds estimators to 𝑂̂(𝑦) can be computed as:  

𝑅𝐸2 (𝑂̂𝐿(𝑦)) =
𝑀𝑆𝐸 (𝑂̂𝐿(𝑦))

𝑀𝑆𝐸 (𝑂̂(𝑦))
 .     𝐿 ∈ [1,2].                (14) 

With the definition of 𝑅𝐸1(𝐹̃(𝑦)) in (13), if 𝑅𝐸1(𝐹̃(𝑦)) is greater than one indicates 𝐹̃(𝑦) outperforms 

𝐹̂(𝑦) at the point 𝑦. This argument can also be extended to 𝑅𝐸2 (𝑂̂𝐿(𝑦)). To generate MERSS, we 

assume that the ranking process is done using imperfect ranking model suggested by Dell and Clutter 

(1972) which assumes that (𝑌, 𝑋) has a bivariate normal distribution with correlation coefficient 𝜌. The 

selected levels of 𝜌 are: 𝜌 = 1 for perfect ranking, 𝜌 = 0.9 for nearly perfect ranking, and 𝜌 = 0.5 for 
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nearly imperfect ranking. Also, two configurations of the set sizes 𝑘 = 2,5 with three levels of set sizes 

𝑚 = 10,15,20 are considered. The values of both 𝑅𝐸1(𝐹̃(𝑦)) and 𝑅𝐸2 (𝑂̂𝐿(𝑦)) are computed for 𝑦 =

𝑄𝑝, 𝑝 ∈ {0.1,0.2, … ,0.9}. where 𝑄𝑝 is the 𝑝𝑡ℎ quantile of the standard normal distribution. For each 

combination of 𝑘,𝑚 and 𝜌, 10,000 samples are generated based on MERSS. Here, we only consider the 

experimental results for normal distribution, as we have noticed that the pattern of the results is not much 

affected by changing the parent distribution. Based on the results presented in Fig. (1- 3), we can observe 

the following: 

• It is seen that the all REs related to all the proposed procedures depend heavily on both the 

location of the point 𝑦 and the quality of ranking 𝜌, yet the effect of the values of 𝜌 is more 

pronounced. 

• 𝐹̃(𝑦) (𝑂̂2(𝑦)) tends to be considerably better than 𝐹̂(𝑦) (𝑂̂(𝑦)) as 𝑦 moves around the 

center of the parent distribution provided that the quality of ranking is not weak. 

• 𝑂̂1(𝑦) is slightly more efficient than 𝑂̂(𝑦) at the lower tail of the distribution in the case that 

the quality of ranking is reasonable. 

• It is clear that when the ranking is perfect, increasing the sample size has a positive effect on 

the 𝑅𝐸1(𝐹̃(𝑦)) and 𝑅𝐸2 (𝑂̂2(𝑦)) as well.  However, the sample size has a week effect on the 

behavior of 𝑂̂1(𝑦). 
• For a fixed sample, increasing the set size improves all REs related to all the proposed 

procedures rather increasing than the cycle assuming the perfectness. This effect becomes 

weaker corresponding to 𝑂̂1(𝑦). 

•  It is apparent that using LPR considerably improves the behavior of 𝑂̂1(𝑦) at the upper tail 

of the distribution regardless the quality of ranking. 

• In summary, it is evident that all the proposed procedures based on LPR can be the best 

choice in the case that the point 𝑦 is far from the boundaries of the parent distribution as well 

as the quality of ranking is fairly good. Otherwise, 𝐹̂(𝑦) and 𝑂̂(𝑦) can be suggested for 

estimating the CDF and the odds function respectively. 

 

5. REAL DATA APPLICATION 

In this part, we investigate the performance of the proposed procedures using an empirical dataset. We 

consider the Australian sport dataset, available at http://www.stats ci.org/data/oz/ais.html, as a 

hypothetical population in which "lean body mass (LBM)", whose summary statistics shown by Fig. 4, is 

considered as the variable of interest. The Pearson correlation between "LBM" and "weight in kg (WT) " 

equals 93%, while for "LBM" and body mass index (BMI) it is 71%. Thus we consider "WT" and "BMI" 

as concomitant variables for ranking purpose in MERSS scheme. Note that the "LBM" itself is also used 

for the ranking purpose. Consequently, our study includes the perfect ranking and two different levels of 

imperfect ranking. 

For the same values 𝑘 and 𝑚 mentioned in Section 4, 10,000 samples with replacement are drawn using 

MERSS schemes. Again, for each the selected samples, all the aforementioned estimators are computed 

and 𝑅𝐸1(𝐹̃(𝑦)) and 𝑅𝐸2 (𝑂̂𝐿(𝑦)) are obtained at each 𝑝 as displayed by Table (2). One can observe from 

the results shown in Table (2) that when the quality ranking is not weak, 𝐹̃(𝑦) and 𝑂̂2(𝑦) are the best 

estimators for all the considered situations except for the cases that the point 𝑦 is near the boundaries. It is 

also evident that the REs for LPR-based estimators improves as increasing 𝑘 rather than 𝑚 as long as the 

quality of ranking is strong. Consequently, all of these results are consistent with what we mentioned in 

the preceding section. Eventually, it may be important to mention that all the tabulated results and 

presented figures are coded using R package and it is available upon request from the second author. 

 

6. CONCLUSION  

 

This article is concerned with the problem of estimating CDF and odds function based on MERSS. New 

CDF estimator based on LPR is derived. The resulting proposed estimator is used to introduce two 

different odds estimators. It turned out that, the estimators based on LPR can have some advantages over 

their competitors for the points at the center of the parent distribution and also the quality of rankings is 

reasonable. Under the perfectness setup, a considerable efficiency gain is observed as increasing the set 

size rather than cycle size for a fixed sample size. Since MERSS is less prone to ranking errors, hence we 

recommend to use our LPR-based estimators.  
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Concerning to possible future topics, a plenty of work has to be done. Further investigation to determine 

the theoretical properties of LPR-based estimators may be needed, as Cattaneo, et al. (2019) studied in 

depth the different properties of the CDF estimator based on LPR under simple random sample design. It 

may be important to employ our proposed odds estimators to introduce new odds ratio estimators using 

the same methodologies explained in Samawi and Al-Saleh (2013) and Huang et al. (2018). It is also 

interesting to note that our proposed strategy explained in Section 2 can be useful for estimating other 

important statistical functions, such as the hazard function and reversed hazard function. This can be done 

by just replacing 𝐹̂(𝑌𝑖(𝑖:𝑖)𝑗) in (5) with log (1 − 𝐹̂(𝑌𝑖(𝑖:𝑖)𝑗)) for estimating the hazard function and with 

log (𝐹̂(𝑌𝑖(𝑖:𝑖)𝑗)) for estimating the reversed hazard function, then selecting the second element of (6). 

The authors plan to take these topics in their subsequent works. 
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APPENDIX 

 

 

 

 

 

Table 1. The efficiency values of the CDF and odds estimators using real data set 

𝒌 = 𝟐 
 𝒎 = 𝟏𝟎 𝒎 = 𝟏𝟓 𝒎 = 𝟐𝟎 

L
B

M
 

𝐩 𝑭̃(𝒚) 𝑶̂𝟏(𝒚) 𝑶̃𝟏(𝒚) 𝑭̃(𝒚) 𝑶̂𝟏(𝒚) 𝑶̃𝟏(𝒚) 𝑭̃(𝒚) 𝑶̂𝟏(𝒚) 𝑶̃𝟏(𝒚) 

.𝟏𝟎 
0.798 1.087 0.944 0.704 1.673 0.875 0.654 1.045 0.712 

.𝟐𝟓 
1.234 1.001 1.131 1.320 1.032 1.333 1.309 1.056 1.342 

.𝟓𝟎 
1.287 0.998 1.232 1.298 0.998 1.473 1.345 1.002 1.523 

.𝟕𝟓 
1.110 0.996 1.087 1.132 0.954 1.077 1.135 0.998 1.063 

.𝟗0 
1.027 0.999 1.003 1.022 0.978 1.001 1.045 0.999 1.013 

B
M

I 

.𝟏𝟎 
0.623 1.043 0.611 0.654 1.077 0.688 0.609 1.039 0.601 

.𝟐𝟓 
1.226 1.004 1.286 1.165 1.047 1.254 1.165 1.030 1.287 

.𝟓𝟎 
1.165 1.029 1.322 1.264 1.017 1.432 1.321 1.020 1.276 

.𝟕𝟓 
0.908 0.998 1.079 1.123 1.001 1.367 1.132 0.990 1.065 

.𝟗0 
1.026 0.998 0.987 1.034 1.000 0.998 1.017 1.000 0.990 

W
T

 

.𝟏𝟎 
0.607 0.999 0.576 0.612 0.976 0.576 0.556 0.925 0.532 

.𝟐𝟓 
1.110 0.987 1.098 1.114 0.998 1.109 1.047 0.911 1.035 

.𝟓𝟎 
1.056 0.967 1.250 1.078 1.023 1.140 1.064 1.017 1.143 

.𝟕𝟓 
0.976 1.002 1.094 0.945 1.001 1.076 0.998 1.000 1.067 

.𝟗0 
0.998 1.000 1.000 1.015 1.000 0.999 0.967 1.000 0.997 

𝒌 = 𝟓 

 𝒎 = 𝟒 𝒎 = 𝟔 𝒎 = 𝟖 

L
B

M
 

𝐩 𝑭̃(𝒚) 𝑶̂𝟏(𝒚) 𝑶̃𝟏(𝒚) 𝑭̃(𝒚) 𝑶̂𝟏(𝒚) 𝑶̃𝟏(𝒚) 𝑭̃(𝒚) 𝑶̂𝟏(𝒚) 𝑶̃𝟏(𝒚) 

.𝟏𝟎 
0.736 1.286 0.897 0.699 1.223 0.765 0.675 1.176 0.699 

.𝟐𝟓 
1.023 1.086 1.043 1.132 1.132 1.187 1.234 1.154 1.276 

.𝟓𝟎 
1.654 1.045 1.277 1.704 1.043 1.434 1.765 1.046 1.654 

.𝟕𝟓 
1.365 0.985 1.143 1.264 0.976 1.220 1.165 0.987 1.398 

.𝟗0 
1.107 1.002 1.000 1.122 1.001 0.977 1.187 1.002 0.997 

B
M

I 

.𝟏𝟎 
0.684 1.143 0.678 0.603 1.187 0.570 0.593 1.087 0.598 

.𝟐𝟓 
0.998 1.010 0.889 1.650 0.987 1.010 1.125 1.023 1.014 

.𝟓𝟎 
1.176 0.998 1.087 1.234 0.967 1.254 1.287 0.998 1.2576 

.𝟕𝟓 
1.065 0.979 1.062 1.055 0.998 1.198 1.025 1.001 1.033 

.𝟗0 
1.010 0.977 1.010 1.043 0.997 0.967 1.002 0.998 0.932 

W
T

 

.𝟏𝟎 
0.501 0.944 0.532 0.554 0.908 0.504 0.501 0.992 0.512 

.𝟐𝟓 
1.016 0.765 0.857 1.030 0.872 0.882 1.017 0.965 0.871 

.𝟓𝟎 
0.932 0.889 0.965 0.993 0.879 0.998 1.009 0.889 0.976 

.𝟕𝟓 
0.997 0.901 1.001 0.886 1.012 1.054 0.943 1.018 1.039 

.𝟗0 
0.897 1.002 0.997 0.911 1.000 1.010 0.912 0.865 0.954 



 
 

98 

 

 

 

 

 

 

 

 

 

 

Fig. 1:  The RE of  𝐹̃(𝑦) with respect to 𝐹̂(𝑦) 
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Fig. 2:  The RE of  𝑂̂1(𝑦) with respect to 𝑂̂(𝑦) 
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Fig. 3:  The RE of  𝑂̂2(𝑦) with respect to 𝑂̂(𝑦) 
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Fig. 4:  The summary statistics of the lean body mass (LBM) 

 


