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ABSTRACT 

In this paper, the estimation of the parameters of Kumaraswamy distribution is carried out in the presence of a Type-I 

generalized hybrid censoring scheme.Maximum likelihood estimators (MLEs) and Bayes estimators of the parameters are 

derived. For Bayesian estimation, an importance sampling method is used. Confidence intervals based on MLEs and Bayes 

credible intervals for the parameters are also obtained. A Simulation study is carried out to check the behavior of the proposed 

estimators. From the simulation study, we observed that Bayes estimators perform better than the MLE concerning mean 

squared errors. A real example is also considered to exemplify the results obtained in the paper.  
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RESUMEN  

En este paper, se lleva cabo la estimación de los  parámetros de la distribución de of Kumaraswamy en presencia de un esquema 

de censura generalizada híbridaTipo-I. Se derian estidores de Máxima Verosimiltud  (MLEs) y Bayes. Para la estimación 

Bayesiana , ase usa el método de muestreo por  importancia. Son obtenidos intervalos de confianza basados en  MLEs e 

intervalos creibles  Bayes de los  parámetros. Un estudio ds simulación fue desarrollado para  checar el comportamiento de los 

propuestos  estimadores. En el estudio de  simulación, observamos que el estimador  Bayes se comportó mejor que el  MLE 

concerniente al error cuadrático medio. Un ejemplo  real fue considerado tambi-en para ejemplificar los resultados  obtenidos en 

este paper.  

 

PALABRAS CLAVE: Máxima verosimilitud, estimdor Bayes, gamma a-prioris, intervalos creibles, muestreo por importancia 

 

1. INTRODUCTION  

 

There are many situations in life-testing and reliability experiments in which units are lost or removed from 
experimentation before failure. The experimenter may not obtain complete information on failure times for all 

experimental units. Data observed from such experiments are called censored data. To save time and cost 

censored data are used. There are two basic censoring schemes, namely Type-I censoring and Type-II 

censoring. In Type-I censoring (Time censoring), failures are observed until the pre-determined time T is 

observed while in Type-II censoring (Failure censoring) the experiment is terminated at the time of r failures, 

where r is specified before experimenting with n items on the test, 0 < r <n. Various modified censoring 

schemes such as progressive censoring, multiply censoring are also available and used to analyze the lifetime 

data. A mixture of Type-I and Type-II censoring schemes is known as a hybrid censoring scheme. Such a 

scheme has received considerable attention among practitioners. It can be expressed as follows.  

Take into account the following life-testing experiment in which n units are placed on the test. The lifetimes 

of the sample units are assumed to be (i.i.d) random variables. Let the ordered lifetimes of these units can be 
marked as x1:n,….xn:n  respectively. The test is aborted when a number r, r<n out of n items have failed or 

when a time T has been reached. In other words, the life-test is terminated at a random time T*= min{Xr:n, T}. 
This time-testing experiment is called Type-I hybrid censoring scheme (Type-I, HCS). Here,r and T are 

preset. It is also generally assumed that the failed items are not replaced. The basic concept of Type-I hybrid 

censoring is initiated by Epstein (1954). 
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The main disadvantage of Type-I HCS is that most of the inference results are accessed under the situation 

that the number of observed failures is at least one. Moreover, there may be very few failures occurring up to  

the pre-chosen time T. So, in that case, the performance of the estimators may be very low. For this reason, 

childs et al. (2003) suggested another hybrid censoring scheme that would terminate the experiment at the 

random time T*= max{Xr:n, T}, where r and T are preset and r<n. This is called Type-II hybrid censoring 

scheme (Type-II, HCS) and in this scheme at least r failures to be observed by the end of the test. If the r 

failures result before time T, the test continues up to time point T. Then again, if the r failures do not result 

before time T, then the test continues until the r failures take place. Here the duration of the experiment may 

be too long. To overcome the disadvantages of Type-I hybrid and Type-II hybrid censoring schemes with 

statistical inference on censoring scheme which can recover the ideal time of the test and the minimum 

number of failures, Chanrasekar et al. (2004) established the Type-I generalized hybrid censoring 

scheme(Type-I, GHSC). Type-I generalized hybrid censoring scheme may be described as  follows. 

Consider a life testing experiment with n items and fixed two positive integers k and r and time epoch T such 

that 1≤ k≤ r ≤ n. If the k failures occur before time T, the test is terminated at min {Xr, T}, where Xr is the time 

of r failures. Then again, if the k failures occur after time T, the test is terminated at the time Xk of k failures.  
One of the following three types of observations can be verified under a Type-I generalized hybrid censoring 

scheme. 

Define Xi as the time of number of i failures, i = 1,2, … ,n. 

Case-I:  𝑋1 < 𝑋2 < ⋯ < 𝑋𝑟if  𝑋𝑘 < 𝑋𝑟 ≤ 𝑇. 

Case-II:  𝑋1 < 𝑋2 < ⋯ < 𝑋𝑑  if 𝑋𝑘 < 𝑇 < 𝑋𝑟 , 𝑑 = 𝑘, 𝑘+1,…, r-1.  

Case-III: 𝑋1 < 𝑋2 < ⋯ < 𝑋𝑘if  𝑇 < 𝑋𝑘. 

Let us denote the observed number of failures by m and test termination time as U then we can write  

(i)  U=Xr, m=r when Xr < 𝑇. 

(ii) U=T, m=d when 𝑋𝑘 < 𝑇 < 𝑋𝑟. 

(iii) U=Xk, m=k when 𝑋𝑘 > 𝑇.           (1.1) 

In this scheme, the data regarding observed failure times will be 𝑥 = (𝑋1, 𝑋2, … . . , 𝑋𝑚).  

Later, Sen et al. (2018) under generalized hybrid censoring set-up has used the asymptotic variance 
minimization approach to determine an optimal life test plan. Most recently, Sayed-Ahmed et al. (2021) 

furnished Type-I  GHSC by using Chen lifetime distribution (CD). In this study, MLE and Bayes methods are 

discussed. Further, asymptotic confidence intervals, as well as Bayes credible, are constructed. 

Various types of lifetime models such as exponential, Rayleigh, Weibull, power function, log normal and 

many more are available and used by practitioners in life testing experiments.   

In the life testing span and reliability tests, much time the data are selected by finite range distribution. This 

distribution applies to many natural phenomena whose outcome has lower and upper bounds. E.g. Storage 

pressure in vacuum whose upper bound is Zmax and lower is 0. For these types of studies, Kumaraswamy 

distribution was found appropriate, introduced by Kumaraswamy (1980). Ponnambalam et al. (2001) and 

Jones (2009) examined the basic properties of Kumaraswamy distribution while some mathematical 

properties of Kumaraswamy distribution that is a flexible model in analyzing failure time data are considered 

by Cordeiro et al. (2010). Rayad and Ahmed (2016) gone into the Bayesian and E-Bayesian estimation for the 
shape parameters of Kumaraswamy distribution based on Type-II censored schemes.  

For various types of censoring schemes the work has been considered for the Kumaraswamy distribution by 

many authors, some of them are Garg (2009), Sindhu et al.(2013), and Sultana et al. (2018). Not much work 

was observed under Type-I generalized hybrid censoring in the case of  Kumaraswamy distribution. 

In this paper, the study intends to estimate the parameters of the Kumaraswamy distribution under Type-I 

generalized hybrid censoring schemes. The rest of the paper is organized as follows: 

In section 2 maximum likelihood estimation is carried out. Section 3 covers Bayesian estimation of the 

parameters of the Kumaraswamy distribution under gamma priors by using importance sampling procedure 

and Bayes credible for the parameters are derived in Section 4.In Section 5 simulation study is conducted to 

check the performance of the estimators. At last, we set down the results and conclusions in Section 6. 

 
2. MODEL AND MAXIMUM LIKELIHOOD ESTIMATION  

 

Let lifetime of n items on the test follows Kumaraswamy distribution having  probability density function 

(pdf) and cumulative distribution function (CDF) as  

𝑓(𝑥; 𝜃, 𝜆) = 𝜆𝜃𝑥𝜆−1(1 − 𝑥𝜆)𝜃−1,          (2.1) 
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𝐹(𝑥; 𝜃, 𝜆) = 1 − (1 − 𝑥𝜆)
𝜃
 , 0 < 𝑥 < 1 and 𝜆, 𝜃 > 0       (2.2) 

where λ and θ are shape parameters. 

According to Sayed-Ahmed et al. (2021) and Sen et al. (2018), the likelihood function based on observed data 

𝑥 observed from (1.1) under Type-I generalized hybrid censoring scheme as discussed in Section 1,is given 

by 

𝐿(𝜃, 𝜆|𝑥)= 
𝑛!

(𝑛−𝑚)!
∏ 𝑓(𝑥𝑖 , 𝜃, 𝜆)[(1 −𝑚

𝑖=1 𝐹(𝑈, 𝜃, 𝜆)]𝑛−𝑚      (2.3) 

Substituting pdf and CDF from (2.1) and (2.2) in (2.3) we have  

L(𝜃, 𝜆|𝑥)= 
𝑛!

(𝑛−𝑚)!
𝜆𝑚𝜃𝑚 ∏ 𝑥𝑖

𝜆−1 ∏ (1 − 𝑥𝑖
𝜆)

𝜃−1
(1 − 𝑈𝜆)𝜃(𝑛−𝑚)𝑚

𝑖=1
𝑚
𝑖=1      (2.4) 

The log-likelihood function reduces to  

log 𝐿(𝜃, 𝜆|𝑥)= log C+m log λ +m log θ +(λ-1)∑ log xi
m
I=1 +  (θ-1)∑ log (1-xi

λm
i=1 )+ θ (n-m) log (1-Uλ) (2.5) 

Where 𝐶 =
𝑛!

(𝑛−𝑚)!
            

To obtain MLEs of θ and λ,we take partial derivation of equation (2.5) concerning θ and λ 

Thus, 
𝜕 log 𝐿(𝜃,𝜆|𝑥)

𝜕𝜃
=

𝑚

𝜃
+ ∑ log(1 − 𝑥𝑖

𝜆) + (𝑛 − 𝑚) log(1 − 𝑈𝜆)𝑚
𝑖=1       (2.6) 

and 
𝜕 log 𝐿(𝜃,𝜆|𝑥)

𝜕𝜆
=

𝑚

𝜆
+ ∑ log 𝑥𝑖 − (𝜃 − 1)∑

𝑥𝑖
𝜆 log 𝑥𝑖

1−𝑥𝑖
𝜆

𝑚
𝑖=1

𝑚
𝑖=1 − 𝜃(𝑛 − 𝑚)

𝑈𝜆 log 𝑈

1−𝑈𝜆     (2.7) 

Comparing the above equation (2.6) and (2.7) to Zero, We get the equation as 

𝜃 = −
𝑚

∑ log(1−𝑥𝑖
𝜆)+(𝑛−𝑚) log(1−𝑈𝜆)𝑚

𝑖=1

         (2.8) 

and 

𝜆 =
𝑚

𝜃(𝑛−𝑚)[
𝑈𝜆 𝑙𝑜𝑔𝑈

1−𝑈𝜆
]−∑ 𝑙𝑜𝑔 𝑥𝑖+(𝜃−1)∑

𝑥𝑖
𝜆 𝑙𝑜𝑔𝑥𝑖

1−𝑥𝑖
𝜆

𝑚
𝑖=1

𝑚
𝑖=1

       (2.9) 

 

As we see that MLE of λ cannot be obtained directly, but we have to solve the equation (2.8) and (2.9) 

simultaneously. On substituting 𝜃 from (2.8) in (2.9), the right-hand side will be a function of only unknown 

parameter λ. By considering the method of iteration the equation (2.9) can be solved for λ which will be MLE 

𝜆̂ of λ. After substituting 𝜆 ̂in (2.8) we get MLE 𝜃 for θ.  

In the case of large samples, we can obtain the confidence intervals based on the diagonal elements of the 

inverse Fisher information matrix  𝐼−1(𝜃, 𝜆̂) which provides the estimated asymptotic variance for the 

parameters θ and λ respectively. 

Fisher information matrix can be estimated by, 

𝐼(𝜃,̂ 𝜆̂) =

[
 
 
 −

Ə2 𝑙𝑜𝑔 𝐿(𝜃, 𝜆|𝑥)

Ə𝜃2
−

Ə2 log 𝐿(𝜃, 𝜆|𝑥)

Ə𝜆Ə𝜃

−
Ə2 log 𝐿(𝜃, 𝜆|𝑥)

Ə𝜆Ə𝜃
−

Ə2 log 𝐿(𝜃, 𝜆|𝑥)

Ə𝜆2 ]
 
 
 

 

The derivatives in 𝐼(𝜃, 𝜆̂)  are  
Ə2 𝑙𝑜𝑔 𝐿(𝜃,𝜆|𝑥)

Ə𝜃2 = −
𝑚

𝜃2          (2.10) 

Ə2 log 𝐿(𝜃,𝜆|𝑥)

Ə𝜆Ə𝜃
= −∑ [

𝑥(𝑖)
𝜆 log 𝑥(𝑖)

1−𝑥(𝑖)
𝜆 ]𝑚

𝑖=1 − (𝑛 − 𝑚) [
𝑈𝜆−log 𝑈

1−𝑈𝜆
]      (2.11) 

and  

Ə2 𝑙𝑜𝑔 𝐿(𝜃,𝜆|𝑥)

Ə𝜆2 = −
𝑚

𝜆2 − (𝜃 − 1) [
𝑥𝑖

𝜆(𝑙𝑜𝑔 𝑥𝑖)
2(1−𝑥𝑖

𝜆)+(𝑥𝑖
𝜆 𝑙𝑜𝑔 𝑥𝑖)

2

(1−𝑥𝑖
𝜆)

2 ] − 𝜃(𝑛 − 𝑚) [
𝑈𝜆(log𝑈)2(1−𝑈𝜆)+(𝑈𝜆 log 𝑈)

2

(1−𝑈𝜆)
2 ] (2.12)   

            

 Thus, two-sided 100(1 − 𝛼)% confidence interval of θ can be defined using Goyal et al. (2020) as 

𝜃 ± 𝑍𝛼
2⁄
√𝑉(𝜃)           (2.13)                               

where Z is standard normal variate such that p (Z > 𝑍𝛼
2⁄
) = 𝛼 2⁄ . 

Similarly, it can be obtained for λ also. 
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3. BAYES ESTIMATION 

 

In this section, we proposed Bayesian inference of the parameters of Kumaraswamy distribution based on 

Type-I generalized HSC. We obtained a Bayes estimate for parameters θ and λ. We have used proper gamma 

priors as well as Jeffrey’s priors for the parameters of the model. Several authors have used different types of 
priors for different types of distributions. There is no criterion to say about the particular prior is better than 

the other one see, Arnold and Press (1983). Such a kind of prior distribution is quite flexible and includes 

noninformative cases as well. One may refer to Sinha (1998)  and Kundu and Pradhan (2009b) for further 

details in this regard. Nadar et al. (2013) have also considered gamma priors for the Kumaraswamy 

distribution.  

Under proper priors: 

We take Proper prior distributions for parameter θ and λ respectively as Gamma (b1, a1) and Gamma (b2, a2), 

since the range of gamma distribution match with the range of the parameters and it is mathematically 

tractable to obtain the posterior distribution of the parameters.  

𝛱1(𝜃) =
e−b1θθa1−1b1

a1

Γa1
  where θ, a1, b1> 0       (3.1) 

 

and 

 

𝛱2(𝜆) =
𝑒−𝑏2𝜆𝜆𝑎2−1𝑏2

𝑎2

𝛤𝑎2
  where λ ,a2, b2>0       (3.2) 

where 𝑏1and 𝑏2 are scale parameters, 𝑎1  𝑎𝑛𝑑 𝑎2 are shape parameters and Γ𝑎 is a gamma function which is 

define as  Γ𝑎 =  ∫ 𝑒−𝑥∞

0
𝑥𝑛−1𝑑𝑥. 

The joint posterior distribution of (θ, λ) using the likelihood in (2.4) and priors of (3.1) and (3.2) is given by  

h(θ, λ|𝑥) =
𝐿(θ, λ|𝑥)𝛱1(𝜃)𝛱2(𝜆)

∫ ∫ 𝐿(θ, λ|𝑥)𝛱1(𝜃)𝛱2(𝜆) 𝑑𝜃𝑑𝜆
∞
0

∞
0

 (3.3) 

=
1

𝐷
𝜃𝑚+𝑎1−1𝑒−𝜃{𝑏1−∑ 𝑙𝑜𝑔(1−𝑥𝑖

𝜆)−(𝑛−𝑚) 𝑙𝑜𝑔(1−𝑈𝜆)𝑚
𝑖=1 }𝜆𝑚+𝑎2−1𝑒−𝜆{𝑏2−∑ 𝑙𝑜𝑔 𝑥𝑖

𝑚
𝑖=1 }𝑒−∑ 𝑙𝑜𝑔(1−𝑥𝑖

𝜆)𝑚
𝑖=1   (3.4) 

Where 𝐷 = ∫ ∫ 𝜃𝑚+𝑎1−1𝑒−𝜆{𝑏2−∑ log 𝑥𝑖
𝑚
𝑖=1 }𝜆𝑚+𝑎2−1𝑒−𝜃𝐴(𝜆)𝑒−∑ log(1−𝑥𝑖

𝜆)𝑚
𝑖=1 𝑑𝜃 𝑑𝜆 

∞

0

∞

0
 

A(λ) = b1 − ∑log(1 − xi
λ) − (n − m) log(1 − Uλ)

m

i=1

 

The Bayes estimates 𝜃𝐵 and 𝜆̂𝐵 of θ and λ under squared error loss function (SELF) are given by  

𝜆̂𝐵 = 𝐸ℎ𝜆
(𝜆) 

Where ℎ𝜆is the marginal posterior distribution of λ. 

𝜆̂𝐵 = ∫ ∫ 𝜆 ℎ(θ, λ|𝑥) 𝑑𝜃𝑑𝜆
∞

0

∞

0

=
1

𝐷
∫ ∫ 𝜃𝑚+𝑎1−1𝑒−𝜆{𝑏2−∑ log𝑥𝑖

𝑚
𝑖=1 }𝜆𝑚+𝑎2𝑒−𝜃𝐴(𝜆)𝑒−∑ log(1−𝑥𝑖

𝜆)𝑚
𝑖=1 𝑑𝜃 𝑑𝜆 

∞

0

∞

0

 

=
1

𝐷
∫ 𝑒−𝜆{𝑏2−∑ log 𝑥𝑖

𝑚
𝑖=1 }𝜆𝑚+𝑎2𝑒−∑ log(1−𝑥𝑖

𝜆)𝑚
𝑖=1

⌈(𝑚+𝑎1)

(𝐴(𝜆))𝑚+𝑎1
𝑑𝜆

∞

0
      (3.5) 

And 𝜃𝐵 = 𝐸ℎ𝜃
(𝜃) 

Where ℎ𝜃 is the marginal posterior distribution of θ. 

𝜃𝐵 = ∫ ∫ 𝜆 ℎ(θ, λ|𝑥)𝑑𝜃𝑑𝜆
∞

0

∞

0

=
1

𝐷
∫ ∫ 𝜃𝑚+𝑎1𝑒−𝜆{𝑏2−∑ log 𝑥𝑖

𝑚
𝑖=1 }𝜆𝑚+𝑎2−1𝑒−𝜃𝐴(𝜆)𝑒−∑ log(1−𝑥𝑖

𝜆)𝑚
𝑖=1  𝑑𝜃

∞

0

∞

0

𝑑𝜆 

=
1

𝐷
∫ 𝑒−𝜆{𝑏2−∑ log 𝑥𝑖

𝑚
𝑖=1 }𝜆𝑚+𝑎2−1𝑒−∑ log(1−𝑥𝑖

𝜆)𝑚
𝑖=1

⌈𝑚+𝑎1+1

(𝐴(𝜆))𝑚+𝑎1+1 𝑑𝜆
∞

0
     (3.6) 

Under Jeffrey’s priors : 

The Jeffrey’s priors of θ and λ are given by 

Π1(𝜃) =
1

𝜃
, 0 < 𝜃 < ∞ ,Π2(𝜆) =

1

𝜆
, 0 < 𝜆 < ∞        (3.7) 

The joint posterior distribution of (θ, λ) using the like-hood in (2.4) and priors in (3.7) can be obtained as 

ℎ(θ, λ|𝑥) =  
𝜃𝑚−1𝑒

−𝜃{−∑ 𝑙𝑜𝑔(1−𝑥𝑖
𝜆)−(𝑛−𝑚)𝑙𝑜𝑔(1−𝑈𝜆)𝑚

𝑖=1 }𝜆𝑚−1
𝑒

−𝜆{−∑ 𝑙𝑜𝑔𝑥𝑖
𝑚
𝑖=1 }

𝑒
−∑ 𝑙𝑜𝑔(1−𝑥𝑖

𝜆)𝑚
𝑖=1

∫ ∫ 𝜃𝑚−1𝑒
−𝜃{−∑ 𝑙𝑜𝑔(1−𝑥𝑖

𝜆)−(𝑛−𝑚)𝑙𝑜𝑔(1−𝑈𝜆)𝑚
𝑖=1 }𝜆𝑚−1

𝑒
−𝜆{−∑ 𝑙𝑜𝑔𝑥𝑖

𝑚
𝑖=1 }

𝑒
−∑ 𝑙𝑜𝑔(1−𝑥𝑖

𝜆)𝑚
𝑖=1 𝑑𝜃 𝑑𝜆

∞
0

∞
0

  (3.8) 

Remark: 
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The above joint posterior will be a particular case of (3.4) under 𝑎1 = 𝑏1 = 𝑎2 = 𝑏2 = 0. Hence the Bayes 

estimates of θ and λ under Jeffery’s priors can be directly gained by substituting 𝑎1 = 𝑏1 = 𝑎2 = 𝑏2 = 0 in 

(3.5) and (3.6). 

 
3.1. Importance sampling method 

 

It is difficult to solve the integrals in (3.5) & (3.6) analytically, so we have to use some approximation 

methods.  There are many approximation methods; namely the Lindley approximation method, Tierney and 

Kadane approximation method, importance sampling method, Metropolis-Hastings methods, Gibbs sampling 

method, etc. Here we use, the importance sampling method to obtain Bayes estimates of the parameters θ and 

λ as considered by Kundu and Pradhan (2009a). This method has special benefits over some other methods 

that can be used to construct a confidence interval also. To apply the importance sampling method we need to 

use the joint posterior distribution of θ and λ given in (3.4), which can be further simplified as, 

ℎ(θ, λ|𝑥) ∝ 𝑔𝜆(𝑚 + 𝑎2, 𝑏2 − ∑ log 𝑥𝑖
𝑚
𝑖=1 ) 𝑔𝜃|𝜆(𝑚 + 𝑎2, 𝐴 (𝜆))𝑤(𝜆)     (3.9) 

Where 𝑔𝜆(𝑚 + 𝑎2, 𝑏2 − ∑ log 𝑥𝑖
𝑚
𝑖=1 ) =  

𝑒−𝜆{𝑏2−∑ log 𝑥𝑖
𝑚
𝑖=1 }𝜆𝑚+𝑎2−1(𝑏2−∑ log 𝑥𝑖)

𝑚
𝑖=1

𝑚+𝑎2

Γ𝑚+𝑎2
   (3.10) 

which is gamma distribution with scale parameter  𝑏2 − ∑ log 𝑥𝑖
𝑚
𝑖=1  and shape parameter 𝑚 + 𝑎2. 

and  𝑔𝜃|𝜆(𝑚 + 𝑎1, A (λ)) =  
𝑒−𝜃𝐴 (𝜆)𝜃𝑚+𝑎1−1(𝐴(𝜆))𝑚+𝑎1

Γ𝑚+𝑎1
       (3.11) 

is gamma distribution with scale parameter A (λ) and shape parameter 𝑚 + 𝑎1. 

and 𝑤(𝜆) =
𝑒

−∑ log(1−𝑥𝑖
𝜆)𝑚

𝑖=1

(𝐴(𝜆))𝑚+𝑎1
 is a function of parameter 𝜆.      (3.12) 

Similarly, we can write (3.8),  the joint posterior distribution of (θ, λ) under Jeffery’s prior  as 

ℎ(θ, λ|𝑥) ∝ 𝑔𝜆(𝑚, −∑ log 𝑥𝑖
𝑚
𝑖=1 ) 𝑔𝜃|𝜆(𝑚, 𝐴1 (𝜆))𝜈(𝜆)      (3.13) 

𝐴1(𝜆) = −∑ 𝑙𝑜𝑔(1 − 𝑥𝑖
𝜆) − (𝑛 − 𝑚)𝑙𝑜𝑔(1 − 𝑈𝜆)𝑚

𝑖=1  of λ . 

where 𝑔𝜆(𝑚, −∑ log 𝑥𝑖
𝑚
𝑖=1 )is gamma density of λ with scale parameter −∑ log𝑥𝑖

𝑚
𝑖=1   and shape parameter 𝑚. 

where 𝑔𝜃|𝜆(𝑚,A1 (λ))is a gamma density of θ given λ with scale parameter A1 (λ) and shape parameter 𝑚.  

and 𝜈(𝜆) =
𝑒

−∑ log(1−𝑥𝑖
𝜆)𝑚

𝑖=1

(𝐴1(𝜆))𝑚+𝑎1
,  a function of λ .        (3.14) 

The Bayes estimates of θ and λ can be obtained using the importance sampling method described in Sulatana 

et al.( 2018)  as follow: 

Algorithm 1: 

(i) Decide the values of n, r, k, and T.  

(ii) Based on the scheme of Type-I generalized hybrid censoring scheme generate the Data and 

determine U and m as discussed in section 1. 
(iii) Using the joint posterior distribution in (3.8). 

(a) Generate N values of λsay (λ1, λ2,…,λN) from gamma (𝑚 + 𝑎2, 𝑏2 − ∑ log 𝑥𝑖
𝑚
𝑖=1 ) 

distribution. 

(b) Generate N values of θ say (θ1, θ2,…,θN) from gamma (𝑚 + 𝑎1, 𝐴(𝜆)) distribution based on 

the N value of λ says (λ1, λ2,…,λN) respectively obtain in the earlier step (a). 

(iv) Based on the N value of λ and θ compute N values of 𝑤(𝜆) and ν(λ). 

(v) Under squared error loss function, the Bayes estimate of any function of θ and λ, say Ψ (θ, λ) 

can be obtained as  

𝜓̂(𝜃, 𝜆) = 𝐸 [𝜓 (𝜃, 𝜆)] =
∑ 𝜓(𝜃𝑖,𝜆𝑖)𝑤(𝜆𝑖)

𝑁
𝑖=1

∑ 𝑤(𝜆𝑖)
𝑁
𝑖=1

 inthe case of gammapriors and  

𝜓̂(𝜃, 𝜆) = 𝐸 [𝜓 (𝜃, 𝜆)] =
∑ 𝜓(𝜃𝑖,𝜆𝑖)𝑣(𝜆𝑖)

𝑁
𝑖=1

∑ 𝑣(𝜆𝑖)
𝑁
𝑖=1

 inthe case of Jeffery’s prior, 

The Bayes estimate of θ is obtained by considering Ψ (θ, λ) = θ in the above computation. 

Similarly, the Bayes estimate of λ can be computed. 

 

3.2. Elicitation of hyperparameters 

 

In Bayes estimation, it is necessary to select the values of prior parameters used in the lifetime model. Many 

methods are available in the literature. One of these methods we have used is as follows: 
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Algorithm 2: 

(i) Compute MLE 𝜃 of parameter say 𝜃 and its variance V(𝜃). 

(ii) Obtain theoretical mean and variance of the prior distribution of 𝜃. In our case for gammaprior 

distribution of 𝜃 as given in (3.1), mean and variance are respectively 𝐸(𝜃) =
𝑎1

𝑏1
and(𝜃) =

𝑎1

𝑏1
2 . 

(iii) Use MLE 𝜃 and V(𝜃) as a prior belief of prior mean and variance respectively𝜃 =
𝑎1

𝑏1
and𝑉(𝜃) =

𝑎1

𝑏1
2 

(iv) Solving the equation in (ii),we get  𝑏̂1 =
𝜃̂

𝑉(𝜃̂)
and𝑎̂1 = 𝑏̂1𝜃̂ 

(v) Similarly, we can get estimates of a parameter of the prior distribution of λ, say 𝑏̂2and  𝑎̂2. 

We have used these values of hyperparameters in Bayes estimation. 

 

4. BAYES CREDIBLE INTERVAL FOR PARAMETER θ AND λ 

 

Here we use the method used by Balakrishnan and Kundu (2013) which is based on importance sampling. For 

computing the HPD credible interval for θ, let us use ℎ (𝜃|𝑥) as the posterior density function of θ and 

𝐻 (𝜃|𝑥) as the posterior distribution function of θ. 

Let 𝜃(𝑝) be the p-th quantile of θ, 0<p<1. 

Observe that for a given 𝜃∗, 

𝐻(𝜃∗|𝑥) = 𝐸[𝐼𝜃≤𝜃∗|𝑥]          (4.1) 

Where 𝐼𝜃≤𝜃∗  is the indication function defined as 

𝐼𝜃≤𝜃∗ = {
1, 𝑖𝑓 𝜃 ≤ 𝜃∗

0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
          (4.2) 

Then a simulated consistent estimator of 𝐻 (𝜃∗|𝑥) is given by 
∑ 𝐼𝜃≤𝜃∗(𝜃𝑖,𝜆𝑖)

𝑁
𝑖=1

∑ 𝑤(𝜃𝑖,𝜆𝑖)
𝑁
𝑖=1

   (4.3) 

Let {θ (i)} be the set of ordered values of {θi} , and let  

𝑤𝑖 = 
𝑤(𝜆(𝑖))

∑ 𝑤(𝜆(𝑖))
𝑁
𝑖=1

  , 𝑖 = 1,2,… , 𝑁.   (4.4) 

Then, we have  

𝐻(𝜃∗|𝑥) = {

0,                                  𝑖𝑓 𝜃∗ < 𝜃(1),

∑ 𝑤𝑗 ,    
𝑖
𝑗=1                𝑖𝑓 𝜃(𝑖) ≤ 𝜃∗ < 𝜃(𝑖+1),

1,                                 𝑖𝑓 𝜃∗ ≥ 𝜃(𝑛)

      (4.5) 

With which 𝜃(𝑝) can be approximated by 

𝜃(𝑝) = {
𝜃(1),                                  𝑖𝑓 𝑝 = 0

𝜃(𝑖),                                  𝑖𝑓 ∑ 𝑤𝑗 < 𝑝 < ∑ 𝑤𝑗
𝑖
𝑗=1

𝑖−1
𝑗=1

      (4.6) 

Hence a  (1-p)100% credible interval for θ can be obtained as 

𝑅𝑗 = (𝜃(
𝑗

𝑁⁄ ), 𝜃(
𝑗+(1−𝑝)𝑁

𝑁
))  j=1,2,…,[pN]          (4.7) 

Where [a] stands for largest integer less than or equal to a. Then among all the Rj’s the interval with the 

smallest width becomes the HPD credible interval for θ. Similarly, it can be obtained for parameter λ. 

 

5. SIMULATION  

 

In this section, a simulation study has been organized to check the performance of the estimators obtain under 

MLE and Bayes estimation (Kundu, 2007; Panahi and Sayyareh, 2014). The samples were generated under a 

Type-I generalized hybrid censoring scheme for N=1000 times using the following algorithm. 

Algorithm 3: 

1) Generate n independent uniform random numbers say x1, x2… xn within (0, 1). 

2) Fix the values for θ, λ, k, T, r, and n and then generate the value of x based on the      

uniform random numbers in step 1) using𝑥 = [1 − (1 − 𝑟)1/𝜃]1/𝜆. 
3) Compare the value of xi, i=1,2,……..,n. with T and further check the following conditions. 

a. If xr< T than put U=x(r) and m=r as well. 
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b. If xk>T than put U=x(k) and m=k as well. 

c. If xk<T<xr than put U=T and m=d. 

We have fixed the values as 𝑇 = {0.95,0.80}, 𝑟 = {34,36,37,40}, 𝑘 = {25,30,35} and n=40 and n= 120 also 

the results are occupied for the values of prior parameters (𝑎1, 𝑏1) and (𝑎2, 𝑏2) decided according to the 

method described in  section 3 as 𝑎1 = 11, 𝑏1 = 5, 𝑎2 = 21 𝑎𝑛𝑑 𝑏2 = 5. 

The estimate of the parameters are considered as an average value of the estimates obtained in 1000 

simulations and MSE of the estimator is obtained as, 

𝑀𝑆𝐸(𝜃𝐵𝑎𝑦𝑒𝑠) =
∑ (𝜃𝐵𝑎𝑦𝑒𝑠 − 𝜃)21000

𝑖=1

1000
 

Table 1. Estimates and MSEs for the parameters when  T = 0.95, n =40. 

r k MLE Bayes- Proper priors Bayes – Jeffery’s Prior 

𝜃 𝜆̂ 𝜃 𝜆̂ 𝜃 𝜆̂ 

40 25 2.18442 

0.46912 

4.13642 

0.66910 

1.95065 

0.06808 

3.73579 

0.18498 

1.70599 

0.09305 

3.38558 

0.26143 

40 30 2.28954 

0.50370 

4.31000 

0.74471 

2.00031 

0.09756 

3.77943 

0.17391 

1.77319 

0.17494 

3.41567 

0.25938 

40 35 2.11221 

0.77269 

4.03078 

0.52237 

1.93047 

0.09758 

3.64203 

0.16455 

1.71181 

0.07554 

3.27980 

0.15269 

34 25 2.42824 

0.79037 

4.40758 

0.97218 

1.93168 

0.07014 

3.67974 

0.14505 

1.58400 

0.09222 

3.22385 

0.25847 

36 25 2.21156 

0.56136 

4.03989 

0.59029 

1.91317 

0.07052 

3.75387 

0.15830 

1.59738 

0.07110 

3.11539 

0.17642 

37 25 2.30236 

0.95245 

4.29541 

0.83035 

1.90801 

0.08914 

3.73220 

0.15130 

1.68296 

0.07830 

3.32527 

0.26702 

The results are shown in Table 1 to Table 4, the first entry denotes the estimates, and the second denotes the 

MSE of the estimate. Confidence intervals based on MLE and Bayes credible intervals for parameters θ and λ 
are respectively displaying in the first and second entry of Table 5 to Table 8. Simulation results for θ = 2 and 

λ = 4   with 𝑎1 = 11, 𝑏1 = 5, 𝑎2 = 21 𝑎𝑛𝑑 𝑏2 = 5. 

Table 2. Estimates and MSEs for the parameters when T = 0.80, n = 40. 

r k MLE Bayes- Proper priors Bayes – Jeffery’s Prior 

𝜃 𝜆̂ 𝜃 𝜆̂ 𝜃 𝜆̂ 

40 25 2.42436 

1.10386 

4.13642 

0.66910 

1.82167 

0.06461 

3.45461 

0.16180 

1.31782 

0.06665 

2.82403 

0.22538 

40 30 2.4709 

1.00997 

4.42384 

1.07496 

1.86943 

0.09446 

3.54340 

0.15734 

1.44187 

0.08108 

3.03802 

0.26967 

40 35 2.20720 

0.58370 

4.02987 

0.56938 

1.89535 

0.06918 

3.53557 

0.1248 

1.56200 

0.06565 

3.06949 

0.17009 

34 25 2.35683 

0.79264 

4.37781 

0.92311 

1.79096 

0.09459 

3.48389 

0.14692 

1.32072 

0.07770 

2.83721 

0.20305 

36 25 2.27996 

0.50403 

4.14679 

0.73619 

1.75514 

0.06693 

3.36513 

0.13127 

1.35454 

0.08649 

2.87396 

0.23052 

37 25 2.12468 

0.95245 

4.09389 

0.76770 

1.74718 

0.08780 

3.41235 

0.15012 

1.30445 

0.10284 

2.80894 

0.23257 

Table 3.  Estimates and MSEs for the parameters when  T = 0.95, n =120. 

r k MLE Bayes- Proper priors Bayes – Jeffery’s Prior 

𝜃 𝜆̂ 𝜃 𝜆̂ 𝜃 𝜆̂ 

40 25 2.32001 

0.40076 

4.19410 

0.62252 

1.18804 

0.03756 

2.61972 

0.07799 

0.80066 

0.01856 

2.14581 

0.08062 

40 30 2.51243 

0.41759 

4.24893 

0.56395 

1.15545 

0.03678 

2.57413 

0.05124 

0.79104 

0.01479 

2.11019 

0.05817 

40 35 2.35990 

0.64972 

4.18387 

0.40228 

1.16653 

0.03024 

2.59826 

0.05369 

0.81401 

0.01894 

2.13480 

0.06254 
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34 25 2.59682 

0.65012 

4.27995 

0.57247 

1.14745 

0.03598 

2.59693 

0.07902 

0.70377 

0.01653 

2.04911 

0.08061 

36 25 2.69848 

0.31649 

4.31098 

0.47222 

1.14371 

0.03438 

2.57697 

0.05957 

0.73975 

0.01329 

2.04820 

0.06186 

37 25 2.42906 
0.71754 

4.22033 
0.42166 

1.14708 
0.03204 

2.59353 
0.05297 

0.77386 
0.01428 

2.11241 
0.06277 

 

 

 

Table 4.  Estimates and MSEs for the parameters when  T = 0.80, n =120. 

r k MLE Bayes- Proper priors Bayes – Jeffery’s Prior 

𝜃 𝜆̂ 𝜃 𝜆̂ 𝜃 𝜆̂ 

40 25 2.32001 

0.70075 

4.19410 

0.62251 

1.18804 

0.03756 

2.61972 

0.07799 

0.80060 

0.01856 

2.14581 

0.08062 

40 30 2.51243 

0.41759 

4.24893 

0.53395 

1.15545 

0.03678 

2.57413 

0.05124 

0.79104 

0.01479 

2.11019 

0.05817 

40 35 2.35991 

0.54972 

4.18387 

0.48228 

1.16653 

0.03024 

2.59826 

0.05369 

0.81401 

0.01894 

2.13480 

0.06254 

34 25 2.59682 

0.48301 

4.27995 

0.57247 

1.14745 

0.03598 

2.59693 

0.07902 

0.70377 

0.01653 

2.04911 

0.08061 

36 25 2.69848 

0.61649 

4.31098 

0.47222 

1.14371 

0.03438 

2.57697 

0.05957 

0.73975 

0.01329 

2.04820 

0.06186 

37 25 2.42906 

0.49975 

4.22033 

0.42166 

1.14708 

0.03204 

2.59353 

0.05297 

0.77386 

0.01428 

2.11241 

0.06277 

Table 5. Confidence intervals and credible intervals when T = 0.95, n= 40. 

r k MLE Bayes- Proper priors Bayes- Jeffery’s prior 

40 25 (0.84197, 3.52688) 
(2.53316, 5.73968) 

(1.83291, 2.39615) 
(3.54408, 4.26345) 

(1.56267, 2.09618) 
(3.15663, 4.36354) 

40 30 (0.89848, 3.68061) 

(2.61861, 6.00146) 

(1.74557, 2.27029) 

(3.36020, 4.20350) 

(1.54403, 2.02407) 

(3. 20173, 4.39522) 

40 35 (0.91565, 3.30875) 

(2.61418, 5.44738) 

(1.79176, 2.18373) 

(3.51356, 4.16924) 

(1.07046, 2.85355) 

(2.35819, 4.51927) 

34 25 (0.68575, 4.17074) 

(2.47503, 6.34013) 

(1.79285, 2.77098) 

(3.46239, 4.93397) 

(1.36229, 2.81547) 

(2.80965, 4.61308) 

36 25 (0.74305, 3.68007) 

(2.53401, 5.54577) 

(1.75996, 2.33937) 

(3.75526, 4.50948) 

(1.24630, 2.47870) 

(2.43824, 4.29829) 

37 25 (0.38952, 4.21520) 

(2.50938, 6.08144) 

(1.89198, 2.62965) 

(3.75526, 4.50948) 

(1.14303, 2.24790) 

(2.45572, 4.22218) 

Table 6. Confidence intervals and credible intervals when T = 0.80, n = 40. 

r k MLE Bayes- Proper priors Bayes- Jeffery’s prior 

40 25 (0.36509, 4.48363) 
(2.53316, 5.73968) 

(1.54334,2.36524) 
(3.04963,4.20753) 

(1.19752, 2.68068) 
(2.67180, 4.32040) 

40 30 (0.50114, 4.44065) 

(2.39170,6.45591) 

(1.43840,2.25081) 

(2.79346,4.21894) 

(0.96147,2.92629) 

(2.12656,4.01773) 

40 35 (0.70975, 3.70464) 

(2.55090, 5.50885) 

(1.71613, 2.28662) 

(3.22675, 4.22206) 

(1.20767, 2.73799) 

(2.44453, 4.39503) 

40 25 (0.61184, 4.10183) 

(2.49466, 6.26096) 

(1.41674, 2.39339) 

(2.95917, 4.25128) 

(0.92715,2.29198) 

(2.19306, 4.38491) 
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36 25 (0.61179, 3.94812) 

(2.46507, 5.82850) 

(1.19973, 2.38471) 

(2.73034, 4.50189) 

(0.85838, 2.62401) 

(2.23894, 4.35397) 

37 25 (0.73316, 3.51619) 

(2.37656, 5.81122) 

(1.26407, 2.14956) 

(2.66176, 3.85305) 

(1.16648, 2.48693) 

(2.73229, 4.33356) 

Table 7. Confidence intervals and credible intervals when T = 0.95, n = 120. 

r k MLE Bayes- Proper priors Bayes- Jeffery’s prior 

40 25 (0.85705, 4.03307) 

(2.85070, 6.05584) 

(1.77248, 2.54293) 

(3.44487, 4.20237) 

(1.06507,2.79861) 

(2.10601,4.07924) 

40 30 (0.86712, 3.65479) 

(2.72825, 5.74551) 

(1.55643, 2.20513) 

(3.44487, 4.20237) 

(1.06507,2.79861) 

(2.10601,4.07924) 

40 35 (0.65981, 3.86125) 
(2.64177, 5.83010) 

(1.60505, 2.17821) 
(3.22741, 4.18274) 

(1.34141, 2.74885) 
(2.68719,4.06182) 

34 25 (0.65981, 3.86125) 

(2.64177, 5.83010) 

(1.60505, 2.70882) 

(3.22741, 4.41310) 

(1.13096, 2.06171) 

(2.46594, 4.58341) 

36 25 (0.72139, 3.71088) 
(2.67280, 5.52892) 

(1.53897, 2.37289) 
(3.01628, 4.17536) 

(1.17903,2.42171) 
(2.53286,4.17412) 

37 25 (0.55278, 3.89866) 

(2.50154, 5.85258) 

(1.57748, 2.65303) 

(3.21536, 4.33088) 

(0.94885, 2.40843) 

(2.06059, 4.18653) 

Table 8.Confidence intervals and credible intervals when T = 0.80, n= 120. 

r k MLE Bayes- Proper priors Bayes- Jeffery’s prior 

40 25 (0.46660, 3.82261) 

(2.47700, 5.68802) 

(1.48526, 2.13667) 

(3.13991, 4.27169) 

(1.51620, 3.08651) 

(2.34185,4.06537) 

40 30 (0.85037, 3.39019) 

(2.59627, 5.46357) 

(1.52985, 2.19236) 

(3.05102, 4.05864) 

(1.27377, 2.59151) 

(2.69560, 4.02698) 

40 35 (0.91351, 4.08140) 

(2.86102, 6.12877) 

(1.49139, 2.04396) 

(3.06828, 3.69372) 

(1.16006, 2.51751) 

(2.47051, 4.05922) 

34 25 (0.76924, 3.53323) 

(2.59625, 5.58796) 

(1.12740, 2.62190) 

(2.71431, 4.21318) 

(0.99492, 2.12613) 

(2.20125, 4.19555) 

36 25 (0.58353, 3.73242) 

(2.63826, 5.38910) 

(1.12528, 2.34460) 

(2.54232, 4.12295) 

(0.82836, 2.44163) 

(2.55920, 4.09252) 

37 25 (0.83641, 3.79801) 

(2.82078, 5.81973) 

(1.31079, 2.29273) 

(2.87812, 4.37771) 

(1.31079, 2.54273) 

(2.63819, 4.01133) 

 

6. REAL DATA 

 
Example 1. (Real Data) In this example, we analyze a real data set, considered by Sulatana et al. (2018), 

which represents the monthly water capacity from the Shasta reservoir in California, USA, and data are 

recorded for the month of February from 1991 to 2010. For further details about the data, one may visit 

http://cdec.water.ca.gov/reservoir_map.html. The maximum capacity of the reservoir is 4552000 AF. The data 

points are listed below as follows: 

 0.338936, 0.431915, 0.759932, 0.724626, 0.757583, 0.811556, 0.785339, 0.783660, 0.815627, 0.847413, 

0.768007, 0.843485, 0.787408, 0.849868, 0.695970, 0.842316, 0.828689, 0.580194, 0.430681, 0.742563  

They have shown that the Kumaraswamy distribution fits the data set well. 

We compute MLEs,  Bayes estimates using informative as well as non-informative priors based on the results 

derived in this paper.   

In Table 9, we have reported estimates of θ and λ of the proposed estimators as well as Table 10 and Table 11 
to reveal confidence intervals and credible intervals for the parameters θ and λ in the two entries of each cell 

respectively for T = 0.80 and 0.82. 

Table 9.  Maximum Likelihood and Bayes Estimates. 
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Table10. Confidence intervals and credible intervals when T = 0.80. 

 

Table11 . Confidence intervals and credible intervals when T = 0.82. 

r k MLE Bayes Bayes-Jeffery’s prior 

17 10 (0.76781,4.71882) 

(2.35621,5.68989) 

(1.14080,2.30117) 

(3.04631,4.21981) 

(1.07899,3.01135) 

(2.73789,4.31478) 

17 12 (0.58761,4.70781) 

(2.10885,6.57893) 

(1.78741,2.39817) 

(3.17867,4.21779) 

(1.57869,2.19974) 

(3.20368,4.36955) 

17 15 (0.79994,3.83771) 

(2.19447,5.33998) 

(1.79166,2.18337) 

(3.67663,4.18944) 

(1.08871,2.59776) 

(2.35866,4.52417) 

13 10 (0.74557,3.68119) 

(2.49116,5.11709) 

(1.75677,2.33744) 

(3.75652,4.08441) 

(1.00121,2.68171) 

(2.15595,4.29881) 

15 10 (0.47889,3.48297) 

(2.18993,5.81443) 

(1.89978,2.48996) 

(3.75512,4.50375) 

(1.15247,2.18714) 

(2.38775,4.22911) 

 

7. CONCLUSION 

 

In this article, we have obtained MLEs and Bayes estimates of unknown parameters θ and λ of a 

Kumaraswamy distribution based on Type-I generalized hybrid censoring scheme. Bayes estimates are 

computed by using importance sampling under the squared error loss function. The asymptotic confidence 

intervals and credible intervals are also obtained. A numerical example is also analyzed using the proposed 

methods of estimation. The proposed methodology may be useful to the practitioners for a practical purpose 

where such type of situation arises. 

From Tables 1 to 4, we observed that as n increases, MSEs decrease in the case of MLEs, as well as Bayes 

estimators but Bayes estimators, perform well compared to MLEs concerning their MSEs. The Bayes 

T r k MLE Bayes- Proper priors Bayes- Jeffrey’s priors 

𝜃 𝜆̂ 𝜃 𝜆̂ 𝜃 𝜆̂ 

0.80 13 10 2.30800 4.76859 1.89551 4.58570 1.49263 3.38354 

 15 10 2.05892 4.54667 1.84609 3.79850 1.19288 3.52303 

 17 10 2.05892 4.54667 1.88287 4.23318 1.53248 3.69812 

 17 12 2.05892 4.54667 3.03159 4.57821 2.07009 3.88257 

 17 15 2.57580 5.00753 1.95977 3.84646 1.40896 3.06031 

0.82 13 10 2.30800 4.76859 1.93151 4.58570 1.38022 2.96578 

 15 10 2.57580 5.00753 1.95977 3.84646 2.07637 4.31318 

 17 10 2.48981 4.93572 1.98839 4.27362 1.56178 3.73311 

 17 12 2.48981 4.93572 3.13131 4.61304 2.39814 4.14339 

 17 15 2.48981 4.93572 1.94581 3.84433 1.39161 3.05131 

r k MLE Bayes- Proper priors Bayes-Jeffery’s prior 

17 10 (0.26413,4.51635) 

(2.33612,5.78991) 

(1.34347,2.32465) 

(3.14736,4.23578) 

(1.27852,2.47829) 

(2.43165,4.35241) 

17 12 (0.41712,4.50171) 

(2.13671,6.29147) 

(1.24710,2.18331) 

(2.89617,4.25637) 

(0.99741,2.67273) 

(2.23948,4.01463) 

17 15 (0.52826,3.86121) 

(2.33716,5.19321) 

(1.54625,2.24573) 

(3.34418,4.25691) 

(1.28993,2.52236) 

(2.54489,4.39647) 

13 10 (0.42723,3.66781) 

(2.03891,4.79864) 

(1.34108,2.23812) 

(3.12716,4.50981) 

(0.91328,2.56891) 

(2.43712,4.32811) 

15 10 (0.57128,3.56892) 

(2.00876,4.77468) 

(1.54987,2.13995) 

(2.76136,3.88305) 

(1.17842,2.36997) 

(2.73886,4.33705) 



 
 

487 

estimators under Jeffery’s prior produce an  underestimate compared to MLEs and Bayes estimates under 

proper prior in case of both the parameters.  

From Tables 5 to 8 we found that Bayes credible intervals give a smaller length of the parameters compared 

to confidence intervals based on MLEs.  In the Bayesian setup, credible intervals based on gamma priors 

compete quite well with Jeffery’s priors. As k increases for a fixed value of n, T, and r,  the length of the 
confidence interval under Bayesian estimation with a gamma prior decreases, but the length of confidence 

interval get fluctuated when r increases for a fixed value of n,T,k in case of Bayesian estimation as well as 

MLEs. 
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