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ABSTRACT 
In the transportation business, different types of materials/items including breakable items such as units made of glass, 
ceramics, plastics, mud, etc. are transported from various sources to different destinations. In this paper, a multiple 
objective fractional transportation problem for breakable commodity is formulated and a multiple objective fractional dual 
is developed. An algorithm is generated to determine an initial efficient basic solution by solving the related lexicographic 
minimum fractional transportation problem for breakable commodity. The algorithm is supported by a real life example of 
Ashi India Glass Limited, India for minimizing the multiple cost for transporting glass-wrap of flat glass. 
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RESUMEN 
En el negocio de la transportación, diferentes tipos de materiales/ítems incluyen ítems frágiles como unidades hechas de 
vidrio, cerámica, plástico, barro, etc. Que son transportados desde  varias fuentes a diferentes destinos. En este se 
formula un problema de transporte  como uno de  múltiple objetivo fraccional transportación, para productos rompibles. 
Un algoritmo es generado para  determinar una solución  inicial básica eficiente para resolver el problema fraccional 
lexicográfico minimal, para productos rompibles relacionados. El algoritmo es soportado por un ejemplo de la vida real 
de Ashi India Glass Limited, India para minimizar el  múltiple costo para  transportar láminas de vidrio protegidas.  
 
PALABRAS CLAVE: Multiobjetivo, Programación Fraccional, productos rompibles, Transportación, Lexicográfica, 

productos rompibles. 
  

1. INTRODUCTION  
 
Transportation problems with fractional objective functions arise in many real life situations e.g., in 
transportation management situations and in analysis of financial aspects of transportation, where an 
individual, or a group, or a commodity is faced with the problem of maintaining good ratios between some 
very important crucial parameters (e.g. total actual to total standard transportation cost, total actual to total 
standard maintenance cost, total return on total investment etc.) concerned with the transportation of 
commodities from certain sources to various destinations. The transportation problems with 𝑘 > 1, (𝑘 =
1,2, … , 𝐾) linear fractional objective functions are very important from practical point of view because they 
take care of those real life planning problems from the economic world which have the mathematical 
structure of a transportation problem but are characterized by the existence of several fractional objective 
functions. Obviously, these objective functions have different units and are measured on different scales. 
Therefore, it is very difficult for a transportation system decision maker to combine these objective 
functions into one overall utility function. Multiple objective fractional transportation problems and its 
variants have been studied by various authors (Cetin and Tiryaki [1]; Doke and Jadhav [2]; Maruti [3]; 
Porchelvi and Sheela [4]; Sadia et al. [5]) and others.  
This paper presents a multiple objective fractional transportation problem for breakable commodity. To 
determine an initial efficient basic solution for the problem, an algorithm is developed by solving the related 
lexicographic minimum fractional transportation problem for breakable commodity. The algorithm is 
illustrated by glass-wrap of flat glass transportation problem of Ashi India Glass Limited, India. 

 
2. MATHEMATICAL FORMULATION 
 
The multiple objective fractional transportation problem for breakable commodity is the problem of 
minimizing the 𝑘 scalar-valued fractional objective functions considered except for conflicts among them. 
It may be stated as: 
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   min 𝑤, =
∑ ∑ ./0

1
0/ 2/0

∑ ∑ 3/0
1 2/00/

         (1) 

 
subject to 

   ∑ 𝑥56 = 𝑠56           (2) 
 
   ∑ 𝑥56 = 𝑑65           (3) 
 
   ∑ 𝑟56:𝑥56 ≤ 𝜃6:5           (4) 
 
         𝑥56 ≥ 0    ∀	𝑖	and 𝑗        (5) 

                                   (𝑖 = 1,2, … ,𝑀; 𝑗 = 1,2, … ,𝑁; 𝑙 = 1,2, … , 𝐿; 𝑘 = 1,2, … , 𝐾) 
where 
𝑠5 	= amount of the breakable commodity available at origin 𝑖 
𝑑6 	=	requirement of the breakable commodity at destination 𝑗  
𝑥56 =	amount of the breakable commodity transported from origin 𝑖 to destination 𝑗 
𝑟56: =	units of 𝐿 breakages (𝑙 = 1,2, … , 𝐿) in one unit of the breakable commodity when it is transported  

from origin 𝑖 to destination 𝑗 
𝜃6: = units of highest amount of breakage 𝑙 of the breakable commodity that can be received by destination 

𝑗 
./0
1

3/0
1   = the proportional   contribution   to   the value of 𝑘HIfractional objective function of shipping one unit 

of breakable commodity from origin 𝑖 to destination 𝑗. 
Here 𝑠5 and 𝑑6 are given non-negative numbers and 
 
   ∑ 𝑠55 = ∑ 𝑑66           (6) 
 
3. LEXICOGRAPHIC MINIMUM FRACTIONAL TRANSPORTATION PROBLEM FOR 
BREAKABLE COMMODITY 
 
Let 𝑀J = {1,2, … ,𝑀},	𝑁J = {1,2, … ,𝑁},	𝐿J = {1,2, … , 𝐿}, 𝐽N = O(𝑖, 𝑗)P𝑖 ∈ 𝑀J, 𝑗 ∈ 𝑁JR. The initial efficient basic 
solution for the problem (1) to (5) can be obtained by solving the following formulated lexicographic 
minimum fractional transportation problem for breakable commodity:  
 

lexmin 

⎣
⎢
⎢
⎢
⎡
𝑤 =

∑ ./02/0(/,0)∈VW

∑ 3/02/0(/,0)∈VW X
X

∑ 𝑥56 = 𝑠5		6∈YJ 				∀	𝑖 ∈ 𝑀J
∑ 𝑥56 = 𝑑6				∀	𝑗 ∈ 𝑁J5∈ZJ

∑ 𝑟56:𝑥56 ≤ 𝜃6:5∈ZJ

							𝑥56 ≥ 0,														∀	(𝑖, 𝑗) ∈ 𝐽N⎦
⎥
⎥
⎥
⎤
       (7) 

 
where 𝑤 ∈ ℝ	,,  𝑝56 = (𝑝56` , . . . , 𝑝56, )b and 𝑞56 = (𝑞56` , . . . , 𝑞56, )b. The additional breakage restrictions can be 
written as:  

∑ 𝑟56:𝑥565∈ZJ + 𝑥Ze:,6 = 𝜃6:                    (8) 
       𝑥Ze:,6 ≥ 0                 (9) 

where 𝑥Ze:,6 are the slack variables and a feasible basic solution will consist of 𝑁𝐿 +𝑀 +𝑁 − 1 basic 
variables. 
Assumptions: 

i) 𝑠5 > 0, 𝑖 ∈ 𝑀J; 𝑑6 > 0, 𝑗 ∈ 𝑁J and 
∑ 𝑠55∈ZJ = ∑ 𝑑66∈YJ                     (10) 

i.e. total destination requirement equals the total origin capacity. This condition ensures the 
existence of a feasible solution to the problem (7) 

ii) ∑ 𝑞56𝑥56(5,6)∈gN	 > 0 for all feasible solutions. 
Definition: The solution 𝑥∗ = (𝑥``∗ , 𝑥`i∗ , …… , 𝑥ZY∗ ) is said to be an efficient or non dominated solution for 
(7) if and only if there is no other feasible solution 𝑥∗∗ for (7) such that 

𝑤∗∗ =
∑ ./02/0

∗∗
(/,0)∈VW

∑ 3/02/0
∗∗

(/,0)∈VW
≤

∑ ./02/0
∗

(/,0)∈VW

∑ 3/02/0
∗

(/,0)∈VW
= 𝑤∗                  (11) 
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Note that a feasible solution for the problem (1) to (5), which is a unique optimal solution with respect to 
the scalar-valued objective function 𝑤`, is an optimal basic solution for (7), and therefore, an efficient basic 
solution for the problem (1) to (5). But, if there is no unique optimal basic solution with respect to the 
scalar-valued objective function 𝑤`, some of these optimal basic solutions may not be efficient solution for 
the problem (1) to (5). By the lexicographic minimum fractional transportation problem for breakable 
commodity denoted by (7), one feasible basic solution, which is optimal with respect to	𝑤`, is identified 
that is an efficient basic solution for the problem (1) to (5).  
Remark: Let ℝ denote the set of the real numbers,	ℝj the set of the non-negative real numbers. With regard 
to lexicographic vector inequalities, the following convention will be applied: For 𝑎, 𝑏	𝜖ℝI,	the strict 
lexicographic inequality 𝑎 ≻ 𝑏 holds, if and only if, 𝑎õ ≻ 𝑏õ holds for �̃� = min{𝑐| 𝑐 = 1, 2, … . . , ℎ;	𝑎o ≠
𝑏o} and the weak lexicographic inequality 𝑎 ≿ 𝑏 holds, if and only if, 𝑎 ≻ 𝑏 or 𝑎 = 𝑏 .       
 
4. VECTOR-VALUED DUAL VARIABLES AND OPTIMALITY CONDITIONS  
 
Consider the 𝑘-component vector-valued dual variables (simplex multipliers) 𝑢5,`, 𝑢5,i	(𝑖 ∈ 𝑀J);  
𝑣6,`, 𝑣6,i	(𝑗 ∈ 𝑁J);	𝜆6:,`, 𝜆6:,i	(𝑗 ∈ 𝑁J, 𝑙 ∈ 𝐿W)	defined such that 

  𝑝56, − |𝑢5,` + 𝑣6,` + ∑ 𝜆6:,`𝑟56::∈}W ~ = 0     (12)
   𝑞56, − |𝑢5,i + 𝑣6,i + ∑ 𝜆6:,i𝑟56::∈}W ~ = 0                 (13) 

  (for those 𝑖, 𝑗 for which 𝑥56 is in the basis) 
and   

𝜆6:,` = 0        (14) 
𝜆6:,i = 0         (15) 

(for those 𝑗, 𝑙 for which 𝑥Ze:,6 is in the basis) 
Also let,  

𝑝56,
� = 𝑝56, − |𝑢5,` + 𝑣6,` + ∑ 𝜆6:,`𝑟56::∈}W ~      (16) 

𝑞56,
� = 𝑞56, − |𝑢5,i + 𝑣6,i + ∑ 𝜆6:,i𝑟56::∈}W ~      (17) 

Let 

 𝑤 =
∑ ./0

1 2/0(/,0)∈VW

∑ 3/0
1 2/0(/,0)∈VW

= �
�
      (18) 

Then 
 𝐴 = ∑ ∑ 𝑝56, 𝑥566∈YJ5∈ZJ + ∑ 𝑢5,`5∈ZJ (𝑠5 − ∑ 𝑥56) +6∈YJ ∑ 𝑣6,`6∈YJ (𝑑6 − ∑ 𝑥56)5∈ZJ +
																								∑ ∑ 𝜆6:,`:∈}W (𝜃6: − ∑ 𝑟56:𝑥56 − 𝑥Ze:,6)5∈ZJ6∈YJ         (19) 
 
Since the quantities in parenthesis are zero from the supply and demand constraints of (7) and additional 
breakage restrictions (8); therefore, A of equation (18) is equal to equation (19) or   

𝐴 = �∑ 𝑝56,
�𝑥56(5,6)∈� − ∑ 𝜆6:,`	𝑥Ze:,6 + 𝑉Y,(6,:)∈�� �       (20) 

where ∑ 		(5,6)∈�  and ∑ 		(6,:)∈�� denote the summation extending over the set of non-basic variables 𝑥56 and 
𝑥Ze:,6 respectively. 
And  

𝑉Y, = �∑ 𝑠5𝑢5,`5∈ZJ + ∑ 𝑑6𝑣6,`6∈YJ +	∑ ∑ 𝜆6:,`:∈}W 𝜃6:6∈YJ �       (21) 
Similarly   

𝐵 = �∑ 𝑞56,
�𝑥56(5,6)∈� − ∑ 𝜆6:,i	𝑥Ze:,6 + 𝑉�,(6,:)∈�� �       (22) 

where  
𝑉�, = �∑ 𝑠5𝑢5,i5∈ZJ + ∑ 𝑑6𝑣6,i6∈YJ +	∑ ∑ 𝜆6:,i:∈}W 𝜃6:6∈YJ �       (23) 

Therefore, the objective function (18) becomes  

𝑤 = �
�
=

�∑ ./0
1 �2/0(/,0)∈� �∑ �0�

1�	2���,0e��
1

(0,�)∈�� �

�∑ 3/0
1 �2/0(/,0)∈� �∑ �0�

1�	2���,0e��
1

(0,�)∈�� �
        (24) 

Now from (24), differentiating 𝑤 with respect to the non-basic variables 𝑥56  (𝑖, 𝑗	ranging over the set 𝐸), 

and let � ��
�2/0

�
∗
denote the value of � ��

�2/0
� at the feasible basic solution 𝑥∗, then  

� ��
�2/0

�
∗
=

��
1./0

1 ����
13/0

1 �

���
1�
�          (25) 

Again from (24), differentiating 𝑤 with respect to the non-basic variables 𝑥Ze:,6  (𝑗, 𝑙	ranging over the set 

𝐸`), and let � ��
�2���,0

�
∗
denote the value of � ��

�2���,0
� at the feasible basic solution 𝑥∗, then  
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� ��
�2���,0

�
∗
=

��
1	�0�

1�		���
1�0�

1�

���
1�
�          (26) 

 
Due to arguments similar to those of Swarup [6], the optimality criteria comes out to be 

𝛿56, = �𝑉�,𝑝56,
� − 𝑉Y,𝑞56,

�� ≥ 0      (27) 
and  
   𝛿Ze:,6, = �𝑉Y,	𝜆6:,i 		− 𝑉�,𝜆6:,`� ≥ 0      (28)
  

 
5. MULTIPLE OBJECTIVE FRACTIONAL DUAL AND OPTIMALITY CONDITIONS  
 
The multiple objective fractional dual of the 𝑘-component multiple objective fractional transportation 
problem for breakable commodity is derived as: 

lexmax 𝑊 =
∑ �/�/

1�e∑ �0�0
1�e∑ ∑ �0�

1� 0��∈¡J0∈�J0∈�J/∈�¢

∑ �/�/
1�e∑ �0�0

1�e∑ ∑ �0�
1� 0��∈¡J0∈�J0∈�J/∈�¢

= ��
1

��
1  

subject to 

£𝑉�, ¤¥𝑢5,` + 𝑣6,` +¦𝜆6:,`𝑟56:
:∈}W

§ − 𝑝56, ¨ − 𝑉Y, ¤¥𝑢5,i + 𝑣6,i +¦𝜆6:,i𝑟56:
:∈}W

§ − 𝑞56, ¨© ≤ 0 

 
�	𝑉�,𝜆6:,` − 𝑉Y,	𝜆6:,i� 	≤ 0   

              𝑉�, ≥ 0  
and 𝑢5,`, 𝑢5,i; 𝑣6,`, 𝑣6,i;	𝜆6:,`, 𝜆6:,i, are unrestricted in sign where 𝑢5,`, 𝑢5,i; 𝑣6,`, 𝑣6,i; 𝜆6:,`, 𝜆6:,i, are 𝑘-component 
vector-valued dual variables. 
Now by the main duality theorem of fractional programming (Swarup [6]): 

∑ ./0
1 2/0(/,0)∈VW

∑ 3/0
1 2/0(/,0)∈VW

	= 
∑ �/�/

1�e∑ �0�0
1�e∑ ∑ �0�

1� 0��∈¡J0∈�J0∈�J/∈�¢

∑ �/�/
1�e∑ �0�0

1�e∑ ∑ �0�
1� 0��∈¡J0∈�J0∈�J/∈�¢

  

giving 

¦ 𝑞56, 𝑥56 ª ¦ ¥𝑢5,` + 𝑣6,` +¦𝜆6:,`𝑟56:
:∈}W

§ 𝑥56 +¦¦𝜆6:,`𝑥Ze:,6
:∈}W6∈YJ(5,6)∈gN

«
(5,6)∈gN

 

= ¦ 𝑝56, 𝑥56 ª ¦ ¥𝑢5,i + 𝑣6,i +¦𝜆6:,i𝑟56:
:∈}W

§
(5,6)∈gN

𝑥56 +¦¦𝜆6:,i𝑥Ze:,6
:∈}W6∈YJ

«
(5,6)∈gN

 

 
⇒	∑ �𝑉�,O|𝑢5,` + 𝑣6,` + ∑ 𝜆6:,`𝑟56::∈}W ~ − 𝑝56, R − 𝑉Y,O|𝑢5,i + 𝑣6,i + ∑ 𝜆6:,i𝑟56::∈}W ~ − 𝑞56, R�𝑥56(5,6)∈gN    
 
    +∑ �𝑉�,𝜆6:,` − 𝑉Y,𝜆6:,i�(5,6)∈gN 𝑥Ze:,6= 0             
From the dual constraints each term in above equation is less than or equal to zero.  
Hence  
                                                                 �𝑉�,𝑝56,

� − 𝑉Y,𝑞56,
��𝑥56 = 0 

And 
                    �𝑉Y,𝜆6:,i − 𝑉�,𝜆6:,`�𝑥Ze:,6 = 0 
i.e. for 𝑥56 > 0,                                        �𝑉�,𝑝56,

� − 𝑉Y,𝑞56,
�� = 0 

for 𝑥Ze:,6 > 0,                          �𝑉Y,𝜆6:,i − 𝑉�,𝜆6:,`� = 0 
Therefore, the optimality criteria are: 
For basic variables 
               𝛿56, = �𝑉�,𝑝56,

� − 𝑉Y,𝑞56,
�� = 0 

𝛿Ze:,6, = �𝑉Y,𝜆6:,i − 𝑉�,𝜆6:,`� = 0 
For non-basic variables 

 𝛿56, = �𝑉�,𝑝56,
� − 𝑉Y,𝑞56,

�� ≥ 0                 (29) 
𝛿Ze:,6, = �𝑉Y,𝜆6:,i − 𝑉�,𝜆6:,`� ≥ 0                                                                    (30) 

 
where                  
𝑝56,

� = 𝑝56, − |𝑢5,` + 𝑣6,` + ∑ 𝜆6:,`𝑟56::∈}W ~                                           (31) 
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𝑞56,
� = 𝑞56, − |𝑢5,i + 𝑣6,i + ∑ 𝜆6:,i𝑟56::∈}W ~      (32) 

𝑉Y, = �∑ 𝑠5𝑢5,`5∈ZJ + ∑ 𝑑6𝑣6,`6∈YJ +	∑ ∑ 𝜆6:,`:∈}W 𝜃6:6∈YJ �     (33) 
 

𝑉�, = �∑ 𝑠5𝑢5,i5∈ZJ + ∑ 𝑑6𝑣6,i6∈YJ +	∑ ∑ 𝜆6:,i:∈}W 𝜃6:6∈YJ �     (34) 
Lemma. If 𝑿𝜶 = |𝒙𝒊𝒋𝜶 , 𝒙𝑴e𝒍,𝒋𝜶 ~, (𝒊, 𝒋) ∈ 𝑱W; 𝒍 ∈ 𝑳W , is  any  feasible  solution  to 𝒌-component fractional cost 
objective function in (7) and 𝒌-component vector valued variables 𝒖𝒊𝜶

𝒌𝟏	, 𝒖𝒊𝜶
𝒌𝟐, 𝒗𝒋𝜶

𝒌𝟏, 𝒗𝒋𝜶
𝒌𝟐, 𝝀𝒋𝒍𝜶

𝒌𝟏, 𝝀𝒋𝒍𝜶
𝒌𝟐	be any 

feasible solution to 𝒌-component fractional cost objective function 𝑾 defined as: 

𝑙𝑒𝑥𝑚𝑎𝑥	𝑊 =	
∑ �/�/

1�e∑ �0�0
1�e∑ ∑ �0�

1� 0��∈¡J0∈�J0∈�J/∈�¢

∑ �/�/
1�e∑ �0�0

1�e∑ ∑ �0�
1� 0��∈¡J0∈�J0∈�J/∈�¢

= ��
1

��
1                   (35) 

subject to 
�𝑉�,O|𝑢5,` + 𝑣6,` + ∑ 𝜆6:,`𝑟56::∈}W ~ − 𝑝56, R − 𝑉Y,O|𝑢5,i + 𝑣6,i + ∑ 𝜆6:,i𝑟56::∈}W ~ − 𝑞56, R�𝑦56 ≥ 0                    (36) 

�	𝑉�,𝜆6:,` − 𝑉Y,	𝜆6:,i�	𝑦Ze:,6 ≥ 0                           (37) 
              𝑉�, ≥ 0                                         (38) 
and 𝑢5,`, 𝑢5,i, 𝑣6,`, 𝑣6,i, 𝜆6:,`, 𝜆6:,i, are unrestricted in sign where O𝑌 = |𝑦56; 𝑦Ze:,6~ ∈
ℝj	|ℝj		is	the	set	of	non − negative	numbersR.		Let 𝐸𝜶 denote the set of all feasible solutions for 𝑘-
component fractional cost objective function in (7) and 𝐸Í denote the set of all efficient solutions for 𝑘-
component fractional cost objective function 𝑊 in (35). Then 

∑ ./0
1 2/0

Î
(/,0)∈VW

∑ 3/0
1 2/0

Î
(/,0)∈VW

≤
∑ �/�/

Î1�e∑ �0�0
Î1�e∑ ∑ �0�

Î1� 0��∈¡J0∈�J0∈�J/∈�¢

∑ �/�/
Î1�e∑ �0�0

Î1�e∑ ∑ �0�
Î1� 0��∈¡J0∈�J0∈�J/∈�¢

   

does not hold. 
Proof: Since 𝑥56Ï ≥ 0and 𝑥Ze:,6Ï ≥ 0, therefore from (7) and (9): 

𝑉�, ÐÑ¦¦𝑢5Ï
1�

6∈YJ5∈ZJ

𝑥56Ï +¦¦𝑣6Ï
1�𝑥56Ï

6∈YJ5∈ZJ

+¦𝜆6:Ï
1�𝑟56:

:∈}W

𝑥56ÏÒ −¦¦𝑝56, 𝑥56Ï

6∈YJ5∈ZJ

Ó

− 𝑉Y, ÐÑ¦¦𝑢5Ï
1�

6∈YJ5∈ZJ

𝑥56Ï +¦¦𝑣6Ï
1�𝑥56Ï

6∈YJ5∈ZJ

+¦𝜆6:Ï
1�𝑟56:

:∈}W

𝑥56ÏÒ −¦¦𝑞56, 𝑥56Ï

6∈YJ5∈ZJ

Ó 

+𝑉�, Ô∑ ∑ 𝜆6:Ï
1�

:∈}W6∈YJ 𝑥Ze:,6Ï Õ − 𝑉Y, Ô∑ ∑ 𝜆6:Ï
1�

:∈}W6∈YJ 𝑥Ze:,6Ï Õ  
for no 𝑋Ï ∈ 𝐸Ï   replacing the values 

𝑉�, Ñ¦¦𝒖𝒊𝜶
𝒌𝟏

6∈YJ5∈ZJ

𝑥56Ï +¦¦𝒗𝒋𝜶
𝒌𝟏𝑥56Ï

6∈YJ5∈ZJ

+¦𝝀𝒋𝒍𝜶
𝒌𝟏𝜃6:

:∈}W

Ò

− 𝑉Y, Ñ¦¦𝒖𝒊𝜶
𝒌𝟐

6∈YJ5∈ZJ

𝑥56Ï +¦¦𝒗𝒋𝜶
𝒌𝟐𝑥56Ï

6∈YJ5∈ZJ

+¦𝝀𝒋𝒍𝜶
𝒌𝟐𝜃6:

:∈}W

Ò 

+VØÙ Ð¦¦λÛÜÝ
Þ�

Ü∈ßJÛ∈àJ

xâeÜ,ÛÝ Ó − VàÙ Ð¦¦λÛÜÝ
Þ�

Ü∈ßJÛ∈àJ

xâeÜ,ÛÝ Ó 

for no 𝑋Ï ∈ 𝐸Ï and using (38) 
∑ 𝑝56, 𝑥56Ï(5,6)∈gN

∑ 𝑞56, 𝑥56Ï(5,6)∈gN
≤
∑ 𝑠5𝑢5Ï

1� + ∑ 𝑑6𝑣6Ï
1� + ∑ ∑ 𝜆6:Ï

1�𝜃6::∈}W6∈YJ6∈YJ5∈ZJ

∑ 𝑠5𝑢5Ï
1� + ∑ 𝑑6𝑣6Ï

1� + ∑ ∑ 𝜆6:Ï
1�𝜃6::∈}W6∈YJ6∈YJ5∈ZJ

 

for no 𝑋Ï ∈ 𝐸Ï 
Hence the result. 
Theorem 1. If 𝑿𝜷 = ä𝒙𝒊𝒋

𝜷 , 𝒙𝑴e𝒍,𝒋
𝜷 å, (𝒊, 𝒋) ∈ 𝑱W; 𝒍 ∈ 𝑳W, is any feasible solution to 𝒌-component fractional cost 

objective function in (7). The solution 𝑿𝜷	is an efficient solution for 𝒌-component fractional cost objective 
function of (7) iff there exist a feasible solution for 𝒌-component fractional cost objective function of (7) 
such that 

∑ 𝑝56, 𝑥56
Í

(5,6)∈gN

∑ 𝑞56, 𝑥56
Í

(5,6)∈gN
=
∑ 𝑠5𝑢5

Í1� + ∑ 𝑑6𝑣6
Í1� + ∑ ∑ 𝜆6:

Í1�𝜃6::∈}W6∈YJ6∈YJ5∈ZJ

∑ 𝑠5𝑢5
Í1� + ∑ 𝑑6𝑣6

Í1� + ∑ ∑ 𝜆6:
Í1�𝜃6::∈}W6∈YJ6∈YJ5∈ZJ

 

then the solution is itself an efficient solution for 𝑘-component fractional cost objective function 𝑊 in (35). 
Proof: By Assumption 
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∑ 𝑝56, 𝑥56
Í

(5,6)∈gN

∑ 𝑞56, 𝑥56
Í

(5,6)∈gN
=
∑ 𝑠5𝑢5

Í1� + ∑ 𝑑6𝑣6
Í1� + ∑ ∑ 𝜆6:

Í1�𝜃6::∈}W6∈YJ6∈YJ5∈ZJ

∑ 𝑠5𝑢5
Í1� + ∑ 𝑑6𝑣6

Í1� + ∑ ∑ 𝜆6:
Í1�𝜃6::∈}W6∈YJ6∈YJ5∈ZJ

 

 
Applying Lemma for any feasible solution 𝑋Ï to 𝑘-component fractional cost objective function 𝑤 in (7), 

∑ 𝑝56, 𝑥56Ï(5,6)∈gN

∑ 𝑞56, 𝑥56Ï(5,6)∈gN
≤
∑ 𝑠5𝑢5

Í1� + ∑ 𝑑6𝑣6
Í1� + ∑ ∑ 𝜆6:

Í1�𝜃6::∈}W6∈YJ6∈YJ5∈ZJ

∑ 𝑠5𝑢5
Í1� + ∑ 𝑑6𝑣6

Í1� + ∑ ∑ 𝜆6:
Í1�𝜃6::∈}W6∈YJ6∈YJ5∈ZJ

=
∑ 𝑝56, 𝑥56

Í
(5,6)∈gN

∑ 𝑞56, 𝑥56
Í

(5,6)∈gN
 

for no 𝑋Ï ∈ 𝐸Ï 
Hence 𝑋Í ∈ 𝐸Í. Similar arguments hold for 𝑘-component fractional cost objective function 𝑊 in (35). 

Theorem 2. Let 𝑿𝜷 = ä𝒙𝒊𝒋
𝜷 , 𝒙𝑴e𝒍,𝒋

𝜷 å
𝑻
, (𝒊, 𝒋) ∈ 𝑱W; 𝒍 ∈ 𝑳W , be a feasible solution to 𝒌-component fractional cost 

objective function 𝒘 in (7) if 
∑ 𝛿56

Í𝑦56 ≤ 0(5,6)∈gN  ,     𝑦56 ∈ ℝj	𝑓𝑜𝑟	(𝑖, 𝑗) ∈ 𝐽N	                (39) 
∑ 𝛿Ze:,6

Í 𝑦Ze:,6 ≤ 0(5,6)∈gN ,     𝑦Ze:,6 ∈ ℝj	𝑓𝑜𝑟	𝑗 ∈ 𝑁J	, 𝑙 ∈ 𝐿W	                 (40) 
has no solution 𝑌 = |𝑦56, 𝑦Ze:,6~, then 𝑋Í is an efficient solution for 𝑘-component fractional cost objective 
function 𝑤 in (7). 
Proof: Let (39) and (40) have no solution. Since from the duality theorem 

¦ 𝛿56
Í𝑥56 ≤ 0

(5,6)∈gN

 

        ∑ 𝛿Ze:,6
Í 𝑥Ze:,6 ≤ 0(5,6)∈gN   holds for no 𝑋 ∈ 𝐸Ï 

	⇒ ∑ ê𝑉�, Ôä𝑢5
Í1� + 𝑣6

Í1� + ∑ 𝜆6:
Í1�𝑟56::∈}W å − 𝑝56, Õ − 𝑉Y, Ôä𝑢5

Í1� + 𝑣6
Í1� + ∑ 𝜆6:

Í1�𝑟56::∈}W å − 𝑞56, Õë 𝑥56(5,6)∈gN   

+∑ ê𝑉�,𝜆6:
Í1� − 𝑉Y,𝜆6:

Í1�ë(5,6)∈gN 𝑥Ze:,6 ≤ 0 holds for no 𝑋 ∈ 𝐸Ï 

⇒									
∑ ìíî

Þ2/0(í,î)∈ïN

∑ ðíî
Þ2/0(í,î)∈ïN

≤
∑ ñíòí

óÞ�e∑ ôîõî
óÞ�e∑ ∑ öî÷

óÞ�øî÷÷∈ùJî∈úJî∈úJí∈û¢

∑ ñíòí
óÞ�e∑ ôîõî

óÞ�e∑ ∑ öî÷
óÞ�øî÷÷∈ùJî∈úJî∈úJí∈û¢

 holds for no 𝑋 ∈ 𝐸Ï 

 

⇒					 ü�
Þ

ü�
Þ ≤

ü�
ý1

ü�
ý1

 holds for no 𝑋 ∈ 𝐸Ï 

where last inequality follows from the fact that V�Ù, 	V�
Í, > 0. Hence 𝑋Í ∈ 𝐸Í. 

 
6. THE ALGORITHM  
 
The complete solution procedure to enumerate optimal and all efficient solutions in a finite number of 
iterations is explored in the steps given below: 
Step 1: Determine an initial feasible basic solution 𝑋` to the multiple objective fractional transportation problem for breakable 

commodity by inspection method. 
Step 2: Determine recursively the 𝑘-dimensional vector-valued dual variables 𝑢5,`, 𝑢5,i	(𝑖 ∈ 𝑀J); 𝑣6,`, 𝑣6,i, (𝑗 ∈ 𝑁J);	𝜆6:,`, 𝜆6:,i	(𝑗 ∈ 𝑁J, 𝑙 ∈

𝐿W) defined such that 
𝑝56, − |𝑢5,` + 𝑣6,` + ∑ 𝜆6:,`𝑟56::∈}W ~ = 0     (41) 

  𝑞56, − |𝑢5,i + 𝑣6,i + ∑ 𝜆6:,i𝑟56::∈}W ~ = 0                 (42) 
(for those 𝑖, 𝑗 for which 𝑥56 is in the basis), and   

𝜆6:,` = 0        (43) 
𝜆6:,i = 0         (44) 

(for those 𝑗, 𝑙 for which 𝑥Ze:,6 is in the basis) 
Step 3: Designate the set of pairs of indices (𝑖, 𝑗) of the basic variables by H. Evaluate the relative       criterion vectors: 

   𝛿56, = �𝑉�,𝑝56,
� − 𝑉Y,𝑞56,

�� 
and    

𝛿Ze:,6, = �𝑉Y,𝜆6:,i − 𝑉�,𝜆6:,`� , for all (𝑖, 𝑗) ∈ 𝐽N\𝐻             
Here 𝑝56,

�, 𝑞56,
� and 𝑉Y,, 𝑉�,	are given by equations (31)-(34). 

Step 4: If 𝛿56, , 𝛿Ze:,6,  are lexicographically greater than or equal to the zero vector for all (𝑖, 𝑗) ∈ 𝐽N\𝐻, then the current feasible basic 
solution is optimal which implies going to Step 7, otherwise go to Step 5. 

Step 5: Select 

                 !
𝛿5∗6∗
,

𝛿Ze:∗,6∗
, " = 𝑙𝑒𝑥𝑚𝑖𝑛 !

𝛿56, 						P						𝛿56, 0~%

𝛿Ze:,6, P𝛿Ze:,6, 0~%
"  

Now	𝑥5∗6∗or 𝑥Ze:∗6∗ becomes a basic variable of the new feasible basic solution. 
Step 6: Change the current solution to the new feasible basic solution using equations:  
    ∑ 𝛾'(' = 0                    (45) 
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    ∑ 𝛾'(( = 0                    (46)  
  ∑ 𝑟'()𝛾'( + 𝛾Ze),() = 0                   (47)  
and        

𝜓 = 𝑚𝑖𝑛
+,-%j
+��.,-%j

�− 2,-
+,-

; − 2��.,-
+��.,-

�                                                          (48) 

 (𝑎 = 1,2, … ,𝑀; 𝑏 = 1,2, … , 𝑁; 𝑦 = 1,2, … , 𝐿) 
 Go to Step 2. 
Step 7: Designate the current feasible basic solution by	𝑋j. The solution 𝑋j = (𝑥56j , 𝑥Ze:,6j ) are optimal solution for lexicographic 

minimum fractional transportation problem for breakable commodity denoted by (7) and hence, the initial efficient basic 
solution for multiple objective fractional transportation problem for breakable commodity denoted by (1) to (5). The optimal 
value of objective function is  

    𝑤,j =
∑ ./0

1 2/0
/

(/,0)∈VW

∑ 3/0
1 2/0

/
(/,0)∈VW

 
The following are the salient features of the proposed algorithm: 
1. The developed algorithm allows the optimization of multiple fractional conflicting objectives 

while permitting an explicit consideration of the existing decision environment. 
2.  The developed algorithm allows the transportation system decision maker to review critically 

the priority structure for the objectives in view of the efficient/non dominated/ pareto optimal 
solution derived by the algorithm. 

3. The most important property of the developed algorithm is its great flexibility which allows 
model experimentation with numerous variations of constraints and priority structure of objectives. 

4. The construction of a sequence of solutions having different objective values as well as quality helps in cases not only where one 
objective is an equally crucial factor besides other objectives but also when analyzing the practicability and sensitivity of an 
existing transportation situation. 

5. The algorithm takes into account the special structure of the problem and will prove to be useful in making the multiple objective 
fractional transportation problem formulated more realistic in logic and other application areas. 

 
7. GLASS-WRAP TRANSPORTATION PROBLEM OF ASHI INDIA GLASS LIMITED  
 
The Algorithm is illustrated by the following real life example:  
In Ashi India Glass Limited, the basic ingredients lime, silica and soda etc. are first blended with recycled 
broken glass known as cullet and then heated at a very high temperature around 1600 centigrade in a furnace 
to form molten glass which is then fed onto the top of a molten tin bath. A flat glass ribbon of almost 
uniform thickness is produced by flowing molten glass on the tin bath under controlled heating. At the end 
of the tin bath, the flat glass is then slowly cooled down, and is fed into the annealing lehr for further 
controlled gradual cooling down. Ashi India Glass Limited has different types of glass-wrap of flat glass in 
each of the four plants 𝑗, located at Taloja-Maharashtra, Roorkee-Uttarakhand, Bawal-Haryana and 
Chennai-Tamil Nadu. The plants 𝑗 are receiving a fixed quantity of glass-wrap of flat glass 𝑖 which has four 
different grades. The glass-wrap of flat glass transportation means one thing above all for Ashi India Glass 
Limited: high costs for packaging, transportation and transportation damage. After the breakage or partial 
breakage, the total value of such glass-wrap of flat glass is zero and it is a loss. Hence it is necessary to 
restrict the breakage to a known specified level. The basic goal is to determine a feasible transportation 
schedule which minimizes the total actual/total standard shipping cost, total actual/total standard 
loading/unloading cost, total actual/total standard overtime cost of transporting glass-wrap of flat glass, 
while satisfying the extra requirement that the quantity of breakage present in glass-wrap of flat glass is 
less than a certain level. 
In Table 1, the total actual transportation cost, total actual loading/unloading cost, total actual overtime 
cost, 𝑝56` , 𝑝56i , 𝑝560 , are written in left bracket while total standard transportation cost, total standard 
loading/unloading cost, total standard overtime cost 𝑞56` , 𝑞56i , 𝑞560   are written in the right bracket. 
Availabilities of glass-wrap of flat glass 𝑠5 and the quantities of breakage 𝜏5 are listed in the last column 
while requirements of glass-wrap of flat glass 𝑑6 and maximum quantity of breakages in glass-wrap of flat 
glass 𝜎6 are shown in the last row. Let 𝑥56 be the tonnage of glass-wrap of flat glass sent from 𝑖 to 𝑗 , then 
it is required to  

min 𝑤, =
∑ ∑ ./0

1
0/ 	2/0		

∑ ∑ 3/0
1

0/ 	2/0
         

subject to 
   ∑ 𝑥56 = 𝑠56 ; ∑ 𝑥56 = 𝑑65 ; 	∑ 𝜏5𝑥565 ≤ 𝜎6𝑑6; 𝑥56 ≥ 0  , ∀	𝑖	and 𝑗  
 (𝑖 = 1,2, … ,4; 𝑗 = 1,2, … ,4; 𝑘 = 1,2,3) 

Table 1: Data for Glass-wrap Transportation Problem 
 
 

Plants 𝑗 
 
1 

 
2 

 
3 

 
4 

𝑠5 𝜏5 

Glass-wrap of flat glass 
  

 
1 £

5
10
10
© £
4
6
12
© £

6
7
3
© £
5
9
7
© £

2
2
4
© £
3
4
5
© £

1
3
6
© £
2
2
2
© 

8 0.4 
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𝑖  
2 £

11
1
1
© £
7
1
7
© £

3
5
16
© £
8
10
14
© £

12
8
1
© £
6
3
1
© £

5
6
3
© £
10
7
4
© 

11 0.8 

 
3 £

4
4
3
© £
1
5
6
© £

10
13
4
© £
3
12
8
© £

2
3
3
© £
12
3
2
© £

7
2
5
© £
8
5
1
© 

7 0.6 

 
4 £

8
7
2
© £
2
2
3
© £

4
12
3
© £
4
10
4
© £

14
1
1
© £
11
2
3
© £

10
4
2
© £
9
5
5
© 

3 0.7 

Tons Reqd. 𝑑6  
6 

 
10 

 
9 

 
4 

  

Max Breakage	𝜎6  
0.7 

 
0.7 

 
0.7 

 
0.7 

  

 
Using the initial feasible basic solution, the 3-dimensional vector-valued dual variables are found using 
equations (41), (42), (43), (44) and then relative criterion vectors 𝛿56,  and 𝛿Ze:,6,  are calculated. Table 2 
shows the transportation tableau with the initial feasible basic solution 𝑋`= |𝑥56, 𝑥Ze:,6~, 𝛿56,  and 𝛿Ze:,6, . 
The marginal two columns contain the values of 𝑢5,` and 𝑢5,i, while lower first two marginal row contain 
the values of 𝑣6,`,𝑣6,i	and lower next two marginal row contain the values of 𝜆6:,` and 𝜆6:,i. The values of 𝜎6 
and 𝑑6 are displayed in the top two rows of the table while 𝜏5 and 𝑠5 are shown in first and second left 
columns respectively. For 𝑋`, the total actual/total standard shipping cost, total actual/total standard 
loading/unloading cost and total actual/ total standard overtime cost of transporting the glass-wrap of flat 
glass are 0.827, 0.991 and 0.996 respectively. 
As 𝑋` is not optimal, therefore applying the selection rule of Step 5, the variable 𝑥:0 becomes an entering 
basic variable and so 𝛾:0 is added to this variable and 𝛾'( , 𝛾Ze),(is added to all the basic variables 
𝑥'( , 𝑥Ze),(. The 𝛾�s  satisfy the equations (45), (46) and (47).  
Using equation (48), 

𝜓=min ê5 × 1, <
i
× 2, 2 × 1, 15 × `

0
ë = 2 

Using this value of 𝜓, the new feasible basic solution can be obtained as: 
𝑥`` = 5− 2 × 1 = 3, 𝑥`i = 5/2 + 0 = 5/2 

Similarly   𝑥`> = 5/2, 𝑥ii = 15/2, 𝑥i0 = 7/2, 𝑥00 = 11/2, 𝑥0> = 3/2, 𝑥>` = 3,	𝑥>0 = 0, 
     𝑥:` = 9,	𝑥:0 = 2,	𝑥:> = 9. 

Proceeding in the manner described above, the subsequent values for various iterations are: 
Initially,    

𝑋` =

⎣
⎢
⎢
⎢
⎡ 50
0
1
15

		

5/2
15/2
0
0
0

		

0
		7/2
7/2
2
0

			

1/2
0
7/2
0
5 ⎦
⎥
⎥
⎥
⎤
    Costs = £

0.827
0.991
0.996

© 

First iteration, 

  𝑋i =

⎣
⎢
⎢
⎢
⎡
3
0
0
3
9

		

5/2
15/2
0
0
0

		

0
		7/2
11/2
0
2

			

5/2
0
3/2
0
9 ⎦
⎥
⎥
⎥
⎤
    Costs = £

0.733
0.964
1.113

© 

Second iteration, 

  𝑋0 =

⎣
⎢
⎢
⎢
⎡
3
0
0
3
9

		

5/2
15/2
0
0
0

		

0
		2
7
0
5

			

5/2
3/2
0
0
6 ⎦
⎥
⎥
⎥
⎤
     Costs = £

0.603
0.972
1.336

© 

Third iteration, 

  𝑋> =

⎣
⎢
⎢
⎢
⎡
3
0
0
3
9

		

5/2
15/2
0
0
0

		

3/2
	1/	2
7
0
11

			

1
3
0
0
0⎦
⎥
⎥
⎥
⎤
     Costs = £

0.539
0.896
1.042

© 

Fourth iteration, 

  𝑋: =

⎣
⎢
⎢
⎢
⎡
5/2
1/2
0
3
7

		

5/2
15/2
0
0
0

		

2
	0
7
0
13

			

1
3
0
0
0⎦
⎥
⎥
⎥
⎤
     Costs = £

0.530
0.868
1.031

© 

The solution 𝑋: is optimal solution for lexicographic minimum fractional transportation problem for 
breakable commodity and hence the initial efficient basic solution for multiple objective fractional 
transportation problem for breakable commodity. The optimal values are 0.530, 0.868 and 1.031 
respectively. 

Table 2: Glass-wrap Transportation Problem with 𝑋`   

𝜏5 ↓ 𝜎6 → 0.7 0.7 0.7 0.7 𝑢5,` 𝑢5,i 
𝑑6 → 𝑠5 6 10 9 4 
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8. CONCLUSION 
 
In this paper, a totally new 
multiple objective 
fractional transportation 
problem for breakable 
commodity is formulated. 
A multiple objective 
fractional dual of the k-
component multiple 
objective fractional 
transportation problem for 
breakable commodity is 
also developed. An 
innovative algorithm and 
its supporting mathematics 
are also presented to 
determine the initial 
efficient basic solution for 
the multiple objective 

fractional transportation problem for breakable commodity by solving the related lexicographic minimum 
fractional transportation problem. The algorithm developed in this paper for solving multiple objective 
transportation problem with respect to the fractional objectives offers a more universal apparatus for a wider 
class of real life decision priority problems than the single objective transportation problems. The multiple 
objective fractional transportation problems result in a subset of feasible solutions from which a 
transportation system decision maker is sure of a most preferred solution. This paper also gives an 
interesting real life application of Ashi India Glass Limited of developed algorithm and multiple objective 
fractional dual. 
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0.4 

 
8 

𝑥``= 5 𝑥`i= 5/2 
 𝛿`0 = £

5608.5
−2901
		6070

© 
𝑥`>=1/2 (5,10,10) (4,6,12) 

 
0.8 

 
11 𝛿i` = £

1237.5
4005.5
3735

© 
𝑥ii = 15/2 𝑥i0=7/2 

𝛿i> = £
−42
4345.5
	−3962.5

© 
(-9,14,0) (-10,39,-10) 

 
 

 
0.6 

 
7 𝛿0` = £

93
−168.5
2100.5

© 𝛿0i = £
1282.5
−951
−3729.5

© 
𝑥00=7/2 𝑥0>=7/2 (11,9,10) (10,9,16) 

 
0.7 

 
3 

𝑥>`= 1 
𝛿>i = £

−735.7
−2637.7
1742

© 
𝑥>0= 2 

𝛿>> = £
−301.5
−477
	−1864

© 
(8,7,2) (2,2,3) 

 𝑥:`= 9 
𝛿:i = £

159.7
400.2
344.5

© 𝛿:0 = £
−1920
966
2099.5

© 
𝑥:>= 7  

𝑣6,` (0,0,0) 
 

(-10,-3,-30) (-99,-6,-15) (-4,-7,-4)  
 
 

𝑣6,i (0,0,0) (-16,35,-34) (-40,-42,-77) (-2,-4,-10) 

𝜆6:,` (0,0,0) (11/4,-3/2,23/4) (15,0,2) (0,0,0) 

𝜆6:,i (0,0,0) (17/4,-8,29/4) (7,6,11) (0,0,0) 


