REVISTA INVESTIGACION OPERACIONAL VOL. 42 , NO. 2, 214-222, 2021

MULTIPLE OBJECTIVE FRACTIONAL
TRANSPORTATION PROBLEM FOR
BREAKABLE COMMODITY

Madhuri Jain!
Department of Mathematics and Statistics, Banasthali Vidyapith, Banasthali-304022, Rajasthan, India.

ABSTRACT

In the transportation business, different types of materials/items including breakable items such as units made of glass,
ceramics, plastics, mud, etc. are transported from various sources to different destinations. In this paper, a multiple
objective fractional transportation problem for breakable commodity is formulated and a multiple objective fractional dual
is developed. An algorithm is generated to determine an initial efficient basic solution by solving the related lexicographic
minimum fractional transportation problem for breakable commodity. The algorithm is supported by a real life example of
Ashi India Glass Limited, India for minimizing the multiple cost for transporting glass-wrap of flat glass.
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RESUMEN

En el negocio de la transportacion, diferentes tipos de materiales/items incluyen items fragiles como unidades hechas de
vidrio, ceramica, plastico, barro, etc. Que son transportados desde varias fuentes a diferentes destinos. En este se
formula un problema de transporte como uno de multiple objetivo fraccional transportacion, para productos rompibles.
Un algoritmo es generado para determinar una solucién inicial basica eficiente para resolver el problema fraccional
lexicografico minimal, para productos rompibles relacionados. El algoritmo es soportado por un ejemplo de la vida real
de Ashi India Glass Limited, India para minimizar el multiple costo para transportar laminas de vidrio protegidas.

PALABRAS CLAVE: Multiobjetivo, Programacion Fraccional, productos rompibles, Transportacion, Lexicografica,
productos rompibles.

1. INTRODUCTION

Transportation problems with fractional objective functions arise in many real life situations e.g., in
transportation management situations and in analysis of financial aspects of transportation, where an
individual, or a group, or a commodity is faced with the problem of maintaining good ratios between some
very important crucial parameters (e.g. total actual to total standard transportation cost, total actual to total
standard maintenance cost, total return on total investment etc.) concerned with the transportation of
commodities from certain sources to various destinations. The transportation problems with k > 1, (k =
1,2, ..., K) linear fractional objective functions are very important from practical point of view because they
take care of those real life planning problems from the economic world which have the mathematical
structure of a transportation problem but are characterized by the existence of several fractional objective
functions. Obviously, these objective functions have different units and are measured on different scales.
Therefore, it is very difficult for a transportation system decision maker to combine these objective
functions into one overall utility function. Multiple objective fractional transportation problems and its
variants have been studied by various authors (Cetin and Tiryaki [1]; Doke and Jadhav [2]; Maruti [3];
Porchelvi and Sheela [4]; Sadia et al. [5]) and others.

This paper presents a multiple objective fractional transportation problem for breakable commodity. To
determine an initial efficient basic solution for the problem, an algorithm is developed by solving the related
lexicographic minimum fractional transportation problem for breakable commodity. The algorithm is
illustrated by glass-wrap of flat glass transportation problem of Ashi India Glass Limited, India.

2. MATHEMATICAL FORMULATION
The multiple objective fractional transportation problem for breakable commodity is the problem of

minimizing the k scalar-valued fractional objective functions considered except for conflicts among them.
It may be stated as:
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k
ZiZjPijxij

min wy, = 5% ake @)

subject to
2jXij =5 ()
Xixy =d; 3)
XiTijiXij < 0y 4)
xl-j > 0 Vlal’ld] (5)

(i=12...Mj=12,..,N;1=12,...,.L; k=1,2,..,K)
where

s; = amount of the breakable commodity available at origin i
d; = requirement of the breakable commaodity at destination j
x;j = amount of the breakable commodity transported from origin i to destination j
7;j; = units of L breakages (I = 1,2, ..., L) in one unit of the breakable commodity when it is transported
from origin i to destination j
6;; = units of highest amount of breakage [ of the breakable commodity that can be received by destination
.
pjj . o . — . . .
—+ = the proportional contribution to the value of k**fractional objective function of shipping one unit
aij
of breakable commodity from origin i to destination j.
Here s; and d; are given non-negative numbers and

2isi=2;d; ©)

3. LEXICOGRAPHIC MINIMUM FRACTIONAL TRANSPORTATION PROBLEM FOR
BREAKABLE COMMODITY

LetM = {1,2,..,M}, N ={1,2,..,N},L ={1,2,...,L},] = {(i,j)|i € M,j € N}. The initial efficient basic
solution for the problem (1) to (5) can be obtained by solving the following formulated lexicographic
minimum fractional transportation problem for breakable commodity:

Z]‘Eﬁxij:Si VieEM
SapeiPiXij | XieXij =d; VjEN

fexmin | w Laper ¥y | Niem TijiXij < Oj @
xij =0, V(@) E]
where w € R¥, p;; = (p}),...,pf)" and q;; = (q}},.--, q;;)". The additional breakage restrictions can be
written as:
Dieit TijiXij + Xyarj = Oj (3)
Xysrj =0 )

where x4, ; are the slack variables and a feasible basic solution will consist of NL + M + N — 1 basic
variables.
Assumptions:
i) s;>0,i€eM;d; >0, j€N and
Dieit Si = Ljen d; (10)
i.e. total destination requirement equals the total origin capacity. This condition ensures the
existence of a feasible solution to the problem (7)

i) 2, j)ej 9ijxi; > 0 for all feasible solutions.
Definition: The solution x* = (x7;, X753, ... ... , Xy ) 18 said to be an efficient or non dominated solution for
(7) if and only if there is no other feasible solution x** for (7) such that
= ZapeIPurii  ZapePuri _ . (11)

aperdifxi; — Lajerdi¥iy
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Note that a feasible solution for the problem (1) to (5), which is a unique optimal solution with respect to
the scalar-valued objective function wy, is an optimal basic solution for (7), and therefore, an efficient basic
solution for the problem (1) to (5). But, if there is no unique optimal basic solution with respect to the
scalar-valued objective function w,, some of these optimal basic solutions may not be efficient solution for
the problem (1) to (5). By the lexicographic minimum fractional transportation problem for breakable
commodity denoted by (7), one feasible basic solution, which is optimal with respect to w,, is identified
that is an efficient basic solution for the problem (1) to (5).

Remark: Let R denote the set of the real numbers, R? the set of the non-negative real numbers. With regard
to lexicographic vector inequalities, the following convention will be applied: For a, b eR", the strict
lexicographic inequality a > b holds, if and only if, a; > b; holds for ¢ = min{c|c = 1,2, .....,h; a, #
b.} and the weak lexicographic inequality a Z b holds, ifand only if,a > bora=5b.

4. VECTOR-VALUED DUAL VARIABLES AND OPTIMALITY CONDITIONS

Consider the k-component vector-valued dual variables (simplex multipliers) u¥*,u¥? (i € M);
Vkl kz (j € N); A1, A%% (j € N, 1 € L) defined such that

) ]l ) ]l
P{(j — (uf* + V;{l + 2iei /1]]'(117”1']'1) =0 (12)
a5 — (W + v + Lier 4i'rip) = 0 (13)
(for those i, j for which x;; is in the basis)
and
At =0 (14)
A =0 (15)
(for those j, I for which x,,,, ; is in the basis)
Also let,
P{(j = pl{;’ — (uf* + V;{l + 2iei /111'(117”1']'1) (16)
qlkj = qll(j —(uf®+ Ujkz + YieL /1]]'327’1'1'1) (17)
Let
Y15 LT (18)
Zaper it B
Then
A= Yien Xjen PiiXi; + Diemn it (5i — Djen Xij) + Xjen Vi (dj — Tiem Xij) +
Zjeﬁ Diel /11{1 ( — Yiefi TijiXi; — xM+l,j) (19)

Since the quantities in parenthesis are zero from the supply and demand constraints of (7) and additional
breakage restrictions (8); therefore, A of equation (18) is equal to equation (19) or

A= [Z(i,j)eE pll(j Xij — X, z)e151/1 Amrj t V] (20)
where ¥; jyeg  and X e, denote the summation extending over the set of non-basic variables x;; and
Xpm+1,j TESpEctively.

And

Vi = [Ziem saui™ + Ljew djvjk1 + Ljen Ziet ’111'{11 91'1] @l
Similarly

B = [Z(i,j)eE qlkj Xij = X(jiyeE, ’11]'(12 Xm+tj T VLI’C] 22
where

VE = [Ziem st + EY djvjk2 + Ljen Ziet ’111'{12 91'1] 3

Therefore, the objective function (18) becomes

k! k1 k
[Z(i,j)eEPij Xij=2(j,heEs Aji xM+l.}'+VN]

w=== 24)

!
[Z(i,j)equ‘} Xij=L(j)eE, lflz xM+l,j+VL’§]
Now from (24), differentiating w with respect to the non-basic variables x;; (i, ranging over the set E),

and let [ ] denote the value of [— at the feasible basic solution x*, then
VDpL}’_Vqu}
25
[axu [VD] 25)

Again from (24), differentiating w with respect to the non-basic variables x,,,,; (j, [ ranging over the set

E;), and let [

] denote the value of [ ] at the feasible basic solution x*, then

XM+1,j XM+1,j
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[ aw ] _ WA —‘2’5‘/1?11 26)
0xm+1j], v
Due to arguments similar to those of Swarup [6], the optimality criteria comes out to be

8 = [Vkpl — Vgl )= 0 (27)
and

Shvy = [VEAE —VEA] =0 (28)

5. MULTIPLE OBJECTIVE FRACTIONAL DUAL AND OPTIMALITY CONDITIONS

The multiple objective fractional dual of the k-component multiple objective fractional transportation
problem for breakable commodity is derived as:
lexmax W = ZiEMSiufuzieﬁ di"]"CIJ’ZJ‘eNZleZ’lﬁleﬂ — V_Iflc
Timsiut +Ejen o) +Ljen Tict Afi 01 V5

vk {(u{‘l +vft + Z /1]’-‘11riﬂ> - pl"]} - vk {(uf‘z + v+ Z Aj’flzriﬂ> - ql’j}l <0

leL leL

subject to

[VEAT -V AF] <0

VEk>o0

and ug‘l, w5 v, 17;‘2; /1]’-‘11, /1]’-‘2, are unrestricted in sign where u{-‘l, ufz; v}‘l,
vector-valued dual variables.

Now by the main duality theorem of fractional programming (Swarup [6]):

k k1 k1 k1
2 perPijrii _ ZiemSi%i +2jen &) +Ejen Zier A Ot

k2. pki v}‘z; /111-‘11, /1]’-‘2, are k-component

I3 — Ty ey v k2.
Zapejdij¥ii  LiemSiti +Ljen 4V L jen DL Aji Ot

S at| Y ( - +za;.«;riﬂ)xi, £ A

giving

Jng) @.N)E] leL jeN leL
— k k2 k2 k2 k2
=Y | Y ( Y riﬂ)xﬂzzaﬂ
DET @@NE] leL jeN leL

= Z(i,j)e][VL;({(ugd + V}d + Yier /1]I'cllrijl) - Pl};} - V,(,‘{(ué‘z + V}CZ + Yet /1]"(127‘1'1'1) - qlkj}]xij

k 4kl k 7k2 -
+ Z(i,j)ef[VD A — Vi 4y ] Xp+1,;= 0
From the dual constraints each term in above equation is less than or equal to zero.
Hence

[VEply —Viai§ Jx; =0

And

VA4 = Va2 Txm; = 0
i.c. for x;; > 0, [Vip —Vias] =0
for xp 4, > 0, [VI\I](A}{IZ - Vg%"(ll] =0

Therefore, the optimality criteria are:
For basic variables

8l = [vipl' - vikals'] =0
Shvr, = [VAAZ —VEA] =0

For non-basic variables

& = [vEpl —Vial ] =0 (29)

Shvry = [VEAZ —VEXH] =0 (30)
where

p{‘j = ptl(j — (uf + V}d + 2iei /111'(1171'1'1) (31)
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at; = qfi — (W + v + T A ) (32)
Vi = [Ziem sl +Zjen dvft + Tjen it A7 6] (33)

vy = [Ziezﬁ siuf? + Ljew djv}(z + Yjen Diel ’111'{12 91'1] (34)

Lemma. If X% = (Xg-, x;‘;l“z,j), (i,j) €J;1€L,is any feasible solution to k-component fractional cost

. . . . . k1 k2 k1 k2 k1 k2
objective function in (7) and k-component vector valued variables uf ,uf ,vf ,v{ , ;", ,A;-‘, be any
feasible solution to k-component fractional cost objective function W defined as:

Yoemr siul 4y s d ey oy - akle k
lexmax W = ieM i ;{2 jEN “J 1k2 jEN ~lel :{lz jl =V_1>,c (35)
Liemsiti “+2jen 4V +LjenLieLAji bt Vp
subject to
K((, ki k1 k1 k K((, k2 k2 k2 k
[V {(u + v+ Yier A rijl) - pij} -V + v+ Yier A rijl) - qz’j}]yl'j =0 (36)
k yk1 k qk2
[VD /1jl -y /11'1 ] Ym+1j 20 (37)
vk=>o0 (38)
and  uft,ul?, vfl, v;‘z, /1]’-‘11, /1]’-‘12, are unrestricted in sign where {Y = (yi]-;yMH,j) €

R, |R, is the set of non — negative numbers}. Let E“ denote the set of all feasible solutions for k-
component fractional cost objective function in (7) and EF denote the set of all efficient solutions for k-
component fractional cost objective function W in (35). Then
k1 k1 k1
Zaper Pl _ Ziemsod +Lien 4 +ZenTierdfi O

gl — ak? ak2 ak2
Laper ¥y Siemsinf +Ejen vy +Ejen Sz Al 0

Jil
does not hold.
Proof: Since x;; = Oand xy; ; = 0, therefore from (7) and (9):

k1 k1 k1
k a a a a a a k.«
Vs E E o xg+ E E vt oxi + E Ay T x| — E E pijXi;

ieM jeN iEM jEN leL iEM jEN
k2 k2 k2
k a a a a a a k..o
=Wy § § up Xt § § v Xt § Ay T | — § § q;jXi;
iEM jEN iEM jEN leL iEM jEN

K k1 r k2
+Vp {Zjeﬁ Diel ]ql xzovll+l,j} -y {Zjeﬁ el qu x1?/1+l,j}
for no X* € E“ replacing the values

PRI DRI Y

iEM jeN iEM jEN leL
k2 k2 k2
k a a a a a
iEM jEN ieM jeN leL
k okl _« k k2 o
+Vp Z Z NI Xmarj ¢ — N Z Z Al XM+l
jeN 1eL jeN 1eL

for no X* € E* and using (38)
k1 k1 k1
Z(i,j)e] plij{lj < Dieir Sivi  + Zjeﬁ djvjq + Zjeﬁ Diel /1,% 0

T ka = k2 L ak2 N k2
Lijre] Xy Liem Siwi® + Xjen d;vj +Zje1v2!el/1jz ;1

for no X% € E“
Hence the result.

Theorem 1. If Xf = (xg., xf, HJ.), (i,j) e ]; le l, is any feasible solution to k-component fractional cost

objective function in (7). The solution X# is an efficient solution for k-component fractional cost objective
function of (7) iff there exist a feasible solution for k-component fractional cost objective function of (7)
such that

k. B Bkl Bkl Bkl
Y )e] pijXi; i Si¥;  t Xjew djVj + 2 jen Diel /11-1 0i
k. BT k2 k2 k2
L e qijXij  Xiei Siuf +Yjew djV]-B + Yjen QieL /11-,;1 0
then the solution is itself an efficient solution for k-component fractional cost objective function W in (35).
Proof: By Assumption
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k1 k1 k1
Z(i,j)e]plijg' _ Yiei Siuf + Yjen d]'va + 2 jen Diel /11-31 0i

k. BT k2 k2 k2
z:(i,j)aqijxij Zieﬁsiuf +Zjeﬁdj77jB +ZjeﬁZlel/1jﬁl 0i

Applying Lemma for any feasible solution X% to k-component fractional cost objective function w in (7),
Bkl Bkl Bkl B
i, )e Pll(jxij < Yiemsi¥y t+Xjendiv;  +Xjen Zier A G _ el Pliji,-

a

-k = k2 k2 k2 - _ k.B
L je] dijij Zieﬁsiuiﬁ +Zjeﬁdjvjﬁ +ZjeﬁZzeZ/1jﬁl 6 Zijei dij¥i;

forno X* € E*
Hence X# € EF. Similar arguments hold for k-component fractional cost objective function W in (35).

T ~ .
Theorem 2. Let X# = (xB x5 ) , (i,j) €J; L € L, be a feasible solution to k-component fractional cost

ij XM+1j

objective function w in (7) if
20 j)e] 553’1‘;‘ <0, YVij € Ry for (i,j) €] (39)
2 j)e 51€1+1JYM+1,J' <0, Yu+1j ERy forjeN,l€L (40)

has no solution Y = (yl- i Ym+r, j), then X? is an efficient solution for k-component fractional cost objective
function w in (7).
Proof: Let (39) and (40) have no solution. Since from the duality theorem

@N)eS
z:(i,j)Ei 51€1+z,jxm+z,j <0 holds forno X € E“
Bkl Bkl Bkl Bkz Bkz Bkz
= Xijre] [Vé‘ {(ui +v7 + Der ) riﬂ) - pl"]} —VE {(uz +vf + T 2 rijl) _ qzk,}] X
k1 k2

+Xne] [Vé‘lﬁ - V&‘Aﬁ Xy41; < 0 holds forno X € E®

k1 k1 k1
Zapel Py < Siemsit) +Tendiv) +en Tierf

0;
o 2 holds for no X € E

= o 'qk-X" — BkZ BkZ
ARETT Fiegsivy  +Zjendjv;  +ZjenZierdy 81

K k
vk v

= K< - holds forno X € E*
vE Ty

k
where last inequality follows from the fact that V, Vg > 0. Hence X# € EF.

6. THE ALGORITHM

The complete solution procedure to enumerate optimal and all efficient solutions in a finite number of

iterations is explored in the steps given below:

Step I:  Determine an initial feasible basic solution X! to the multiple objective fractional transportation problem for breakable
commodity by inspection method.

Step 2: Determine recursively the k-dimensional vector-valued dual variables uft, uf? (i € M); 17}‘1, v}‘z, ( €N); Aﬁl,lﬁz (EN,I€e

L) defined such that

Pl — (ul" + 0" + Tier Afi 1) = 0 (41)
qf = (W +vf% + Rier Afri) = 0 (42)
(for those i, j for which x;; is in the basis), and
2t = (43)
22 =0 (44)

(for those j, L for which x4y ; is in the basis)
Step 3: Designate the set of pairs of indices (i, j) of the basic variables by H. Evaluate the relative criterion vectors:

sk = (vl - vials']
and

8iyrj = [VEAR2 — VEARY] , forall (i,)) € J\H
Here p{‘j’, q{‘j, and VX, V¥ are given by equations (31)-(34).
Step 4: If 6{‘}, 8% +1,; are lexicographically greater than or equal to the zero vector for all (i, )) € J\H, then the current feasible basic
solution is optimal which implies going to Step 7, otherwise go to Step 5.

Step 5: Select
k k k
8t 8k | skzo
X = lexmin| r <
Sn+i..j, 5M+z,j|5M+1,j =0
Now x; j,0r X4, j, becomes a basic variable of the new feasible basic solution.

Step 6: Change the current solution to the new feasible basic solution using equations:
YaYar =0 (45)
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YpYar =0 (46)

Xy TabyYap + Yaayp =0 47)
and
= min |-Tep;  TMeyb (48)
Yab<0 Yab YM+y,b
YM+y,b<O
(a=12,.,.M;b=12,..,N;y=12,..,L)
Go to Step 2.

Step 7:  Designate the current feasible basic solution by X°. The solution X° = (xg.,xg +1,7) are optimal solution for lexicographic

minimum fractional transportation problem for breakable commodity denoted by (7) and hence, the initial efficient basic

solution for multiple objective fractional transportation problem for breakable commodity denoted by (1) to (5). The optimal

value of objective function is

o _ ZaperPh

WR =S gl

(i)l 9i%ij

The following are the salient features of the proposed algorithm:

1. The developed algorithm allows the optimization of multiple fractional conflicting objectives
while permitting an explicit consideration of the existing decision environment.

2. The developed algorithm allows the transportation system decision maker to review critically
the priority structure for the objectives in view of the efficient/non dominated/ pareto optimal
solution derived by the algorithm.

3. The most important property of the developed algorithm is its great flexibility which allows
model experimentation with numerous variations of constraints and priority structure of objectives.

4. The construction of a sequence of solutions having different objective values as well as quality helps in cases not only where one
objective is an equally crucial factor besides other objectives but also when analyzing the practicability and sensitivity of an
existing transportation situation.

5. The algorithm takes into account the special structure of the problem and will prove to be useful in making the multiple objective
fractional transportation problem formulated more realistic in logic and other application areas.

7. GLASS-WRAP TRANSPORTATION PROBLEM OF ASHI INDIA GLASS LIMITED

The Algorithm is illustrated by the following real life example:

In Ashi India Glass Limited, the basic ingredients lime, silica and soda etc. are first blended with recycled
broken glass known as cullet and then heated at a very high temperature around 1600 centigrade in a furnace
to form molten glass which is then fed onto the top of a molten tin bath. A flat glass ribbon of almost
uniform thickness is produced by flowing molten glass on the tin bath under controlled heating. At the end
of the tin bath, the flat glass is then slowly cooled down, and is fed into the annealing lehr for further
controlled gradual cooling down. Ashi India Glass Limited has different types of glass-wrap of flat glass in
each of the four plants j, located at Taloja-Maharashtra, Roorkee-Uttarakhand, Bawal-Haryana and
Chennai-Tamil Nadu. The plants j are receiving a fixed quantity of glass-wrap of flat glass i which has four
different grades. The glass-wrap of flat glass transportation means one thing above all for Ashi India Glass
Limited: high costs for packaging, transportation and transportation damage. After the breakage or partial
breakage, the total value of such glass-wrap of flat glass is zero and it is a loss. Hence it is necessary to
restrict the breakage to a known specified level. The basic goal is to determine a feasible transportation
schedule which minimizes the total actual/total standard shipping cost, total actual/total standard
loading/unloading cost, total actual/total standard overtime cost of transporting glass-wrap of flat glass,
while satisfying the extra requirement that the quantity of breakage present in glass-wrap of flat glass is
less than a certain level.

In Table 1, the total actual transportation cost, total actual loading/unloading cost, total actual overtime

cost, pl-lj, pizj, pl-3j, are written in left bracket while total standard transportation cost, total standard
loading/unloading cost, total standard overtime cost qilj, ql-zj, qf’j are written in the right bracket.
Availabilities of glass-wrap of flat glass s; and the quantities of breakage 7; are listed in the last column
while requirements of glass-wrap of flat glass d; and maximum quantity of breakages in glass-wrap of flat
glass g; are shown in the last row. Let x;; be the tonnage of glass-wrap of flat glass sent from i to j , then
it is required to
. Y Pfj Xij
min w; = —Ziqu{‘,- oy

subject to
XX =S nixip =djs X Tix;; < 05dp; x5 =0 ,Viand j
(i=12.4j=12.4k=123)
Table 1: Data for Glass-wrap Transportation Problem

Plants j
Si T
1 2 3 4
_— N 5114 6][5 2][3 112 8 0.4
Glass-wrap of flat glass 1 10lle 7llo 2l |a 3ll2
101112 3 4115 6112
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i 11[7 378 12116 5][10 11 0.8
2 1|1 5 ||10 8 |[3 6]|7
161114 1 111 4
4111 1073 2][12 71[8 7 0.6
3 4115 13(|12 313 215
3116 4 118 3 5
812 4 1[4 147111 101719 3 0.7
4 7112 12||10 1 (|2 4 |5
2113 3 114 1113 2 115
Tons Reqd. d;
6 10 9 4
Max Breakage g;
0.7 0.7 0.7 0.7

Using the initial feasible basic solution, the 3-dimensional vector-valued dual variables are found using
equations (41), (42), (43), (44) and then relative criterion vectors é‘ik]- and 6% +1,j are calculated. Table 2

shows the transportation tableau with the initial feasible basic solution X1= (xi i XM, ]-), é‘l-k]- and 6,’;, +Lj

The marginal two columns contain the values of u¥* and uf?, while lower first two marginal row contain

the values of v}‘l,v}‘z and lower next two marginal row contain the values of /1]’-‘11 and /1]’-‘12. The values of o}

and d; are displayed in the top two rows of the table while 7; and s; are shown in first and second left
columns respectively. For X1, the total actual/total standard shipping cost, total actual/total standard
loading/unloading cost and total actual/ total standard overtime cost of transporting the glass-wrap of flat
glass are 0.827, 0.991 and 0.996 respectively.
As X1 is not optimal, therefore applying the selection rule of Step 5, the variable x5; becomes an entering
basic variable and so ys; is added to this variable and ygp, Ym4y,pis added to all the basic variables
Xab) Xm+y,p- The y's satisfy the equations (45), (46) and (47).
Using equation (48),
Y=min[5x 1, Ix2,2x 1,15 x 3| =2
Using this value of 1, the new feasible basic solution can be obtained as:
X1=5-2%X1=3,x,=5/24+0=5/2
Similarly x;4, = 5/2, x5, = 15/2, %53 = 7/2, %33 = 11/2, x5, = 3/2,x41 = 3, %43 =0,
X51 =9, Xs53 = 2,X54 = 9.
Proceeding in the manner described above, the subsequent values for various iterations are:
Initially,
5 5/2 0 1/2
0 15/2 7/2 0 0.827
Xt=(o o 7/2 72 Costs = [0.991]
1 0 2 0 0.996
15 0 0 5
First iteration,

35/2 0 5/2
015/2 7/2 0 0.733
X2=[0o o 11/2 3/2 Costs = [0.964]
30 0 0 1.113
9 0 2 9
Second iteration,
3 5/2 0 5/271
015/2 2 3/2 0.603
=0 0o 7 o0 Costs = [0.972]
30 0 o0 1.336
9 0 5 6
Third iteration,
3 5/2 3/2 1
015/2 1/2 3 0.539
X*=l0 o 7 0 Costs = [0.896]
30 0o 0 1.042
9 0 11 0l
Fourth iteration,
'5/2 5/2 2 17
1/2 15/2 0 3 0.530
X*=l0o 0 7 0 Costs = [0.868]
3 0 0 0 1.031
L 7 0 13 0

The solution X° is optimal solution for lexicographic minimum fractional transportation problem for
breakable commodity and hence the initial efficient basic solution for multiple objective fractional
transportation problem for breakable commodity. The optimal values are 0.530, 0.868 and 1.031
respectively.

Table 2: Glass-wrap Transportation Problem with X!

[l [ ag-] 0.7 | 0.7 | 0.7 | 0.7 [ u uk?
La-] s | 6 | 10 | 9 | 4 |
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{
x11=5 X12= 52 56085] | x1a=12 (5,10,10) | (46,12)
08 | s s =[] 8. CONCLUSION
1237.5 =152 =7/2 —42 -9,14,0 -10,39,-10 .
08 | sn= 4005,51 2 2 8y = | 43455 l (91400 (€ " | In this paper, a totally new
3735 39625 multiple objective
93 12825 | 2572 X34=T12 (11,9,10) | (109,16) fractional  transportation
0. 831 = [—1685 83, = —951
S [2100.5] 7 7205 problem for breakable
commodity is formulated.
Xar= 1 —735.7 Yas=2 3015 (8.7.2) 2.23) 4 ..
07 | 3 810 = |-26377 Sua = | 477 A multiple objective
2 —1864 .
1 fractional dual of the k-
o= 9 159.7 —1920) | xop=7 component multiple
55, = 400.2] 853 =| 966 l . R
344.5 2099.5 objective fractional
transportation problem for
vl (0,0,0) (-10,-3,-30) (999,-6,-15) (4,74 breakable COmmOdity is
also developed. An
o ©00 (163539 404270 (2410 innovative algorithm and
its supporting mathematics
,1;.‘11 (0,0,0) (11/4,-3/2,23/4) (15,0,2) (0,0,0)
are also presented to
T2 ©,00) (17/4,8,29/8) 761D ©,00) determine the initial
efficient basic solution for

the multiple objective
fractional transportation problem for breakable commodity by solving the related lexicographic minimum
fractional transportation problem. The algorithm developed in this paper for solving multiple objective
transportation problem with respect to the fractional objectives offers a more universal apparatus for a wider
class of real life decision priority problems than the single objective transportation problems. The multiple
objective fractional transportation problems result in a subset of feasible solutions from which a
transportation system decision maker is sure of a most preferred solution. This paper also gives an
interesting real life application of Ashi India Glass Limited of developed algorithm and multiple objective
fractional dual.
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