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ABSTRACT

We assume the Foster-Greer-Thorbecke (FGT ) poverty index as a centered and normalized empirical
process indexed by a particular Donsker class or collection of functions and define this poverty index
as a bootstrapped empirical process, to show that the weak convergence of the FGT empirical
process centered and normalized is a necessary and sufficient condition for the weak convergence of
the FGT bootstrap empirical process centered and normalized. Thus, this result reflects that under
certain conditions, the consistency in weak convergence of the FGT empirical process considered
as a classical estimator of poverty (statistics) and the consistency in weak convergence of the FGT
bootstrap empirical process considered as a bootstrap estimator of poverty (bootstrap statistics) are
asymptotically equivalents for random samples of incomes statistically large and representative of a
statistical universe of households.
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RESUMEN
Nosotros asumimos el indicador de pobreza de Foster-Greer-Thorbecke (FGT) como un proceso
emṕırico centrado y normalizado indexado por una particular clase o colección de funciones Donsker
y definimos este indicador de pobreza como un proceso emṕırico del tipo bootstrap, para probar que
la convergencia débil del proceso emṕırico FGT centrado y normalizado es una condición necesaria
y suficiente para la convergencia débil del proceso emṕırico bootstrap FGT centrado y normalizado.
Aśı, este resultado refleja que bajo ciertas condiciones, la consistencia en convergencia débil del pro-
ceso emṕırico FGT considerado como un estimador clásico de pobreza (estad́ıstico) y la consistencia
en convergencia débil del proceso emṕırico bootstrap FGT considerado como un estimador boot-
strap de pobreza (estad́ıstico bootstrap) son asintóticamente equivalentes para muestras aleatorias
de ingresos estad́ısticamente grandes y representativas de un universo estad́ıstico de hogares.
PALABRAS CLAVE: Indicador de pobreza de Foster-Greer-Thorbecke, Convergencia de procesos

emṕıricos, Clases Donsker, Procesos emṕıricos bootstrap.

1. INTRODUCTION

The problem of estimating one-dimensional poverty measures is theoretically addressed in this paper,
developing a central limit theorem, in the framework of bootstrap empirical processes, and to achieve

∗PHarmath@austral.edu.ar

174



this goal first we introduce some basic aspects. The properties of the axiomatic method of poverty
introduced by Sen in 1976 [see [14]], provided the basis to study the problem posed as a phenomenon
that depends only on income, acquiring this focus a greater mathematical rigor within the economic
theory. In fact, several measures of poverty begin are proposed, all of which are supported in the Sen’s
axiomatic definition.

This type of measures is commonly known as one-dimensional poverty indices, because in their con-
struction, only one variable or economic dimension is considered: the income [see [17], for a detailed
discussion about the axiomatic method and all the one-dimensional poverty indices proposed in the
literature].

Formally, let N be a statistical universe of individuals (let say households), such that for each one
of them it is possible to determine its level of income among other features, for any random sample
of n individuals withdrawn from this population, a measure or classic index of poverty is a function
P : Rn+1

+ → [0, 1], where the value of P(y, z) indicates the degree or level of poverty associated with
the vector of incomes y = (y1, ..., yn) ∈ Rn+ and the poverty line fixed z ∈ R+, such that any j-th
individual of the random sample is considered poor if yj < z [see e.g. [13], and [8]].

In this framework, one of the most important measures is the Foster-Greer-Thorbecke (FGT ) poverty
index, defined in [5] by

FGT (y, z, α) =
1

n

q∑
j=1

(
z − yj
z

)α
, (1.1)

and emphasizes the degree of aversion to poverty represented by a parameter α ≥ 0, where q the
number of poor individuals for a random sample of size n. In the particular cases α = 0, 1, 2, we have
that:
(i) FGT (y, z, 0) reduces to H(y, z) =

q

n
, the headcount ratio of poor individuals that reflects the

incidence of poverty.

(ii) FGT (y, z, 1) =
q

n

(
1− µ

z

)
= H(y, z)I(y, z) := HI(y, z),

where µ =
1

q

q∑
j=1

yj is the average income of the poor individuals in the sample, I(y, z) is defined as

the income gap ratio, and consequently HI(y, z) is the combined income gap ratio that reflects the
intensity or severity of poverty as the product of the proportion of the poor due to the poverty gap.
(iii) FGT (y, z, 2) is interpreted as the depth or inequality among poor.

The results introduced by Lo and Seck in [11], establish that the FGT poverty index defined in (1.1)
understood as an empirical process satisfies a central limit theorem. However, in this article we will
introduce an important weak convergence relationship between the FGT empirical process of Lo and
Seck and a very particular FGT bootstrap empirical process, defined by us below in the next part or
section.

Our theoretical proposal presented here is a particular contribution over the literature: formally
states that under certain conditions, the consistency in weak convergence of the centered and normal-
ized FGT empirical process of Lo and Seck considered as a classical estimator of poverty (statistics),
and the consistency in weak convergence of our centered and normalized FGT bootstrap empirical
process considered as a bootstrap estimator of poverty (bootstrap statistics), are asympto-tically equiv-
alents for random samples of incomes statistically large and representative of a statistical universe of
households. In fact, our theoretical result goes hand in hand with [1] and [7] among others, where
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these point out precisely that the classic inference for this type of one-dimensional poverty indices
such as the FGT , when only small random samples of incomes are available, can present problems in
assuming the convergence of the statistics to the normal distribution; and naturally the same analysis
is valid for the corresponding bootstrap statistics.

This paper is organized as follows. In Section 2, we present the problem statement. The Section 3
presents our main result and some consequences. The conclusions are given in Section 4. Finally, the
Appendix contains all the tools required for the comprehension of the central proof in our theoretical
proposal.

2. THE PROBLEM

Lo and Seck in [11] define the class of functions FΓ = {fα : α ≥ 0}, where

fα(x) =

∣∣∣∣z − xz
∣∣∣∣αI{x < z}.

For any i.i.d. collection {Yj}nj=1 with empirical measure Pn =
1

n

n∑
j=1

δYj , each projection Yj on

(XN,AN,PN) represents the observed level of income for the j-th statistical individual of the random
sample of size n in the probability space (X ,A,P), such that for each ω = (y1, y2, ...) ∈ XN fixed as
infinite-numerable sequence of sample points (incomes), we have that the trajectories or realizations
are

Gn(fα) =
√
n(Pn − P)(fα) =

1√
n

n∑
j=1

(fα(Yj)− P(fα)), (2.1)

where

Pn(fα) =
1

n

n∑
j=1

fα(Yj) =
1

n

n∑
j=1

∣∣∣∣z − Yjz

∣∣∣∣αI{Yj < z}

=

∫
X
fα(yj)dPn(yj)

=

∫ z

0

∣∣∣∣z − yjz

∣∣∣∣αdFn(yj)

= EFn [fα(Yj)] , (2.2)

and with mean functions given by

P(fα) =

∫
X
fα(y)dPY (y) =

∫ z

0

∣∣∣∣z − yz
∣∣∣∣αdF(y) = EF [fα(Y )] , (2.3)

where F(z) = P(Y ≤ z) and Fn(z) =
1

n

n∑
j=1

I{Yj < z} =
]{Yj < z : 1 ≤ j ≤ n}

n
respectively, with

z ∈ R+ fixed and q = nFn(z).
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On the other hand, the classical nonparametric bootstrap empirical measure introduced by Efron in
[3, 4] is defined as

P̂n =
1

n

n∑
j=1

δŶj ,

where for any collection of coordinate projections Y1, ..., Yn i.i.d.∼ P, Ŷ1, ..., Ŷn denotes a bootstrap
sample with replacement of Pn. Following [12], among others, we can consider a triangular array
of exchangeable random variables W = {Wnj : n ∈ N and j = 1, ..., n.} on (W,D,PW ), to define a
general empirical measure

P̂Wn =
1

n

n∑
j=1

WnjδYj ,

which is precisely known as the exchangeably weighted bootstrap empirical measure. Observe that
the random variables W can be interpreted as random weights, in the sense that each component
Wnj reflects the number of times that Yj is selected for the n trials of any bootstrap sample with

replacement. Moreover, the classical measure P̂n defined above is a special case of P̂Wn obtained by
taking (Wn1, ...,Wnn)

′
= Wn = Mn, with Mn = (Mn1, ...,Mnn)

′ ∼Multn(n, (1/n, ..., 1/n)). In what
fo-llows, we assume that Wn = (Wn1, ...,Wnn)

′
satisfies the conditions:

A1. For all n ∈ N, Wn = (Wn1, ...,Wnn)
′

is exchangeable. That is, for any permutation π =
(π(1), ..., π(n)) of (1,...,n), the joint distribution of π(Wn) = (Wnπ(1), ...,Wnπ(n))

′
is the same as that

of Wn.

A2. For all j = 1, ..., n, with n ∈ N, Wnj ≥ 0 and

n∑
j=1

Wnj = n.

Now, combining A2 and the result obtained by [16], page 598, we obtain

(P̂Wn − Pn)(fα) =
1

n

n∑
j=1

(Wnj − 1)(δYj − P)(fα) =
1

n

n∑
j=1

ξnjZj(fα)

for any fα ∈ FΓ, where ξnj = Wnj − 1 and Zj = δYj − P respectively, with Zj(fα) = fα(Yj)− P(fα).
Therefore

ĜWn =
√
n(P̂Wn − Pn) =

√
n

(
1

n

n∑
j=1

ξnjδYj −
1

n

n∑
j=1

ξnjP
)
,

is the exchangeably weighted bootstrap empirical measure centered and normalized, and for each fα ∈
FΓ with ω = (y1, y2, ...) ∈ XN fixed

ĜWn (fα) =
√
n(P̂Wn − Pn)(fα)

=
√
n

(
1

n

n∑
j=1

ξnjfα(Yj)−
1

n

n∑
j=1

ξnjP(fα)

)
. (2.4)

The expressions (2.1), (2.2) and (2.3) defined above, allow to describe the FGT poverty index defined
in (1.1) as the FΓ-indexed FGT empirical process of Lo and Seck centered and normalized, with
FΓ ⊂ Lp(X ,A,P), the compositions fα(Yj) = fα ◦ Yj : XN → X → R, for all α ≥ 0, j = 1, 2, ..., n,
and E(Y pj I{Yj < z}) < ∞; that is, an additional moment condition (see Remark 7). Analogously,
the expression (2.4) represents the trajectories of our FΓ-indexed FGT bootstrap empirical process
centered and normalized. In [11] it was shown that
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Gn =
√
n(Pn − P)

weakly−−−−→ G, in `∞(FΓ),

where the limit process {G(fα) : fα ∈ FΓ, α ≥ 0} has covariance function

Cov [fα, fβ ] = E [fα+β(Y )]− E [fα(Y )]E [fβ(Y )] , (2.5)

for every couple fα, fβ ∈ FΓ. In consequence, this class FΓ = {fα : α ≥ 0} is P-Donsker. Now,
starting from this result, we can develop a Donsker-type charac-terization. For it, we considering the
following conditions for the weights ξnj , where B1 is a redefinition of A1:

B1. For all n ∈ N, ξ
n

= (ξn1, ..., ξnn)
′

is exchangeable.

B2. The norm L2,1 of ξn1 is uniformly bounded. That is,

‖ξn1‖2,1 =

∫ ∞
0

√
PW (|ξn1| ≥ t)dt ≤ k <∞,

where in fact ‖·‖2,1 is a norm in the space of real random variables, and is square-integrable by exercise
10.5.1 (a) in [10], page 198.

B3. ξn1 satisfies the weak second-moment condition. That is,

lim
t→∞

lim sup
n→∞

t2PW (|ξn1| ≥ t) = 0.

B4. Exists b > 0 such that

lim
n→∞

E[|ξn1|2] = b.

3. THE MAIN RESULT AND SOME CONSEQUENCES

To presents in detail the central proof, first we enunciate the general Theorem 2.1 in [10], pages 15–16,
110; among others, about the two conditions required for the weak convergence of a given empirical
process to a very particular “stochastic object”.

Theorem 1. The empirical process of n random variables, {Yn}n∈N converges weakly to a tight process
Y in `∞(F), if and only if:

1. For all finite collection {f1, ..., fk} ⊂ F , the multivariate distribution of {Yn(f1), . . . , Yn(fk)}′ con-
verges to that of {Y (f1), . . . , Y (fk)}′ .

2. There exists a pseudometric ρ
P

for which F is totally bounded and

lim
δ↓0

lim sup
n→∞

P ∗
(

sup
f,g∈F :ρP (f,g)≤δ

|Yn(f)− Yn(g)| > ε
)

= 0,

for all ε > 0.

In what follows, as in Theorem 10.1 in [10], pages 175–177; or Theorem 2.9.2 in [15], pages 179–180, we
prove that conditions (1) and (2) of the Theorem 1 enunciated above are equivalent for the processes

{Gn(fα) =
√
n(Pn − P)(fα) : fα ∈ FΓ, α ≥ 0} and {ĜWn (fα) =

√
n(P̂Wn − Pn)(fα) : fα ∈ FΓ, α ≥ 0}

defined in (2.1) and (2.4), respectively.
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Theorem 2. Given (XN,AN,PN) × (W,D,PW ) × (Z, C,Pε), the basic product probability space. Let
{Zj}nj=1 be i.i.d. empirical processes, where Zj := δYj − P, with Yj : XN → X i.i.d. ∼ P such that
E(Y pj I{Yj < z}) <∞ for all j = 1, 2, ..., n, where z ∈ R+ is the poverty line fixed. Let {ξnj}nj=1 be i.i.d.
random weights independent of {Zj}nj=1 that satisfies the conditions B1-B4, with mean E[ξnj ] = µ and
ξnj := Wnj−1, where {Wnj}nj=1 satisfies the conditions A1-A2. Let FΓ = {fα : α ≥ 0} ⊂ Lp(X ,A,P)
be a collection or class of functions such that

fα(yj) =

∣∣∣∣z − yjz

∣∣∣∣αI{yj < z},

for all yj ∈ X , and z ∈ R+. Then the following conditions are equivalent:
(i) FΓ is P-Donsker.

(ii) ĜWn converges weakly to a tight process in `∞(FΓ).

Proof. Let

Gn(fα) =
√
n

(
1

n

n∑
j=1

fα(Yj)− P(fα)

)
,

be an alternative representation of the centered and normalized process defined in (2.1). Then, its
correspondent limit process G indexed by each fα ∈ FΓ, {G(fα) : fα ∈ FΓ, α ≥ 0}, can be defined by

G(fα) = fα(Y )− P(fα), (3.1)

where P(fα) = E [fα(Y )]. Indeed, E [G(fα)] = 0, and

Cov [G(fα),G(fβ)] = E[G(fα),G(fβ)]

= E [(fα(Y )− E[fα(Y )])(fβ(Y )− E[fβ(Y )])]

= E[fα(Y )fβ(Y )]− E[fα(Y )]E[fβ(Y )]

= P(fαfβ)− P(fα)P(fβ), (3.2)

for every couple fα, fβ ∈ FΓ. Hence, we have a limit process with zero mean, and a covariance function
such that its structure go to the hand with the covariance function (2.5) suggested in [11].

Analogously, let

ĜWn (fα) =
√
n

(
1

n

n∑
j=1

ξnjfα(Yj)−
1

n

n∑
j=1

ξnjP(fα)

)
,

be our bootstrap process defined in (2.4). Then, its correspondent limit process G̃ indexed by each
function fα ∈ FΓ, {G̃(fα) : fα ∈ FΓ, α ≥ 0}, can be defined by

G̃(fα) = ξn1[fα(Y )− P(fα)], (3.3)
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where P(fα) = E[fα(Y )]. Indeed, E[G̃(fα)] = 0, and

Cov
[
G̃(fα), G̃(fβ)

]
= E

[
G̃(fα), G̃(fβ)

]
= E [(ξn1fα(Y )− ξn1E[fα(Y )]) (ξn1fβ(Y )− ξn1E[fβ(Y )])]

= E[ξ2
n1]E[fα(Y )fβ(Y )]− E[ξ2

n1]E[fα(Y )]E[fβ(Y )]

= E
[
ξ2
n1

]
[P(fαfβ)− P(fα)P(fβ)], (3.4)

for every couple fα, fβ ∈ FΓ, where by condition B4 the second moment of ξn1, E[ξ2
n1] is finite, and

consequently (3.4) is good defined.

Intentionally relaxing the notation, let Fk = {f1, ..., fk} ⊂ FΓ, then

{Gn(f1),Gn(f2), ...,Gn(fk)}
′ weakly−−−−→ Nk(0,Λ),

where Λ = [Λi`]i=1,...,k; `=1,...,k with

Λi` = Cov[G(fi),G(f`)] = P(fif`)− P(fi)P(f`), (3.5)

and {
ĜWn (f1), . . . , ĜWn (fk)

}′
weakly−−−−→ Nk(0,Υ),

where Υ = [Υi`]i=1,...,k; `=1,...,k with

Υi` = Cov[G̃(fi), G̃(f`)] = E[ξ2
n1][P(fif`)− P(fi)P(f`)], (3.6)

and the covariance structures (3.5) and (3.6) naturally coincide with the functions (3.2) and (3.4),
respectively.

In this instance, we have that the convergence of all finite-dimensional marginal distributions of Gn
and ĜWn is equivalent to FΓ. Thus it suffices to show that the asymptotic equicontinuity conditions of
both processes are equivalent.

Because the limit process G defined in (3.1) is tight, we can assume that exists a pseudometric ρ
on FΓ for which the pseudometric space (FΓ, ρ) is totally bounded and such that G has a version
with almost all its trajectories (sample paths) uniformly continuous for ρ. That is, for every couple
fα, fβ ∈ FΓ

|G(fα)−G(fβ)| ≤ λρ(fα, fβ) a.s., for some λ > 0.

Consequently,
[G(fα)−G(fβ)]

2 ≤ [λρ(fα, fβ)]
2

a.s.

and [
E [G(fα)−G(fβ)]

2
]1/2

≤ λρ(fα, fβ), (3.7)
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where

E [G(fα)−G(fβ)]
2

= V ar [G(fα)] + V ar [G(fβ)]− 2Cov [G(fα),G(fβ)]

= V arP [fα(Y ))]) + V arP [fβ(Y )]− 2CovP [fα(Y ), fβ(Y )]

=

∫
(fα − fβ)2dP−

(∫
(fα − fβ)dP

)2

(3.8)

= V arP [fα(Y )− fβ(Y )]

= ρ2
P
(fα, fβ),

is a pseudometric for every couple fα, fβ ∈ FΓ, with (3.8) as in [6], page 853, and [12], page 2054,
among others. Therefore, (3.7) implies that if fα ∈ Bρ(fi, ε) then fα ∈ BρP (fi, λε), where Bρ(fi, ε) and
BρP (fi, λε) denote the open balls of center fi and radius ε and λε in (FΓ, ρ) and (FΓ , ρP), respectively.
This shows that the pseudometric space (FΓ, ρP) is totally bounded, and the same analysis is true for
the limit process G̃ defined in (3.3), considering the pseudometric spaces (FΓ, %) and (FΓ, %P), with

%2
P
(fα, fβ) = E

[
ξ2
n1

] ∫
(fα − fβ)2dP−

(
E[ξn1]

∫
(fα − fβ)dP

)2

, (3.9)

for every couple fα, fβ ∈ FΓ, where the pseudometrics (3.8) and (3.9) are good defined because the
elements of the class FΓ are P-square-integrables.

On the other hand, making a slight modification in our Lemma 8 of the Appendix, it is clear that

1

2
‖ξn1 − µ‖1E∗

∥∥∥∥ 1√
n

n∑
j=1

εjZj

∥∥∥∥
FΓ

 ≤ E∗
∥∥∥∥ 1√

n

n∑
j=1

ξnjZj

∥∥∥∥
FΓ


≤ 2n0E∗ [‖Z1‖FΓ ] (3.10)

E
[

max
1≤j≤n

|ξnj |√
n

]
+ 4‖ξn1‖2,1

max
n0<k≤n

{
E∗
∥∥∥∥ 1√

k

k∑
j=n0+1

εjZj

∥∥∥∥
FΓ

}
for any 1 ≤ n0 < n. If the class FΓ is P-Donsker, then by Remark 9 it is P-Glivenko-Cantelli too.
Therefore, by Lemma 8.13, page 141 in [10], it follows that E∗[‖Z1‖FΓ

] = P∗(‖fα(Y1)−P(fα)‖FΓ
) <∞,

which is also true by Lemma 10, under the hypothesis (ii). Making a slight modification in the Lemma

11, is clear that E
[

max
1≤j≤n

|ξnj |√
n

]
→ 0, under the conditions B2 and B3. Combining this with (3.10),
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it follows

1

2
‖ξn1 − µ‖1 lim sup

n→∞
E∗
∥∥∥∥ 1√

n

n∑
j=1

εjZj

∥∥∥∥
Fδ


≤ lim sup

n→∞
E∗
∥∥∥∥∥∥ 1√

n

n∑
j=1

ξnjZj

∥∥∥∥∥∥
Fδ


≤ 4‖ξn1‖2,1 sup

k>n0

E∗
∥∥∥∥∥∥ 1√

k

k∑
j=1

εjZj

∥∥∥∥∥∥
Fδ

 (3.11)

for each n0, δ > 0, where Fδ = {fα−fβ : fα, fβ ∈ FΓ, ρP(fα, fβ) < δ} and the pseudometric ρP(fα, fβ)
defined in (3.8) common for both proceses, because without loss of generality, we can put E[ξ2

n1] = 1
and E[ξn1] = 1 with the intention that the pseudometric %P(fα, fβ) defined in (3.9) coincides with
(3.8), where in fact (FΓ, ρP) is a totally bounded pseudometric space.

By the Lemma 11.2.12, pages 343–344 in [2], the Rademacher variables ε1, ε2, ..., εn can be removed in
(3.11), at the “cost” of changing the constants, with ‖ξn1‖2,1 <∞ by condition B2 and ‖ξn1−µ‖1 <∞
by B4. Consequently, for any sequence δn ↓ 0 we conclude that

E∗
[∥∥∥EnP

∥∥∥
Fδn

]
→ 0⇐⇒ E∗

[∥∥∥BnP

∥∥∥
Fδn

]
→ 0, (3.12)

where EnP
=

∑n
j=1(δYj−P)
√
n

and BnP
=

∑n
j=1 ξnj(δYj−P)

√
n

, respectively. Both sides of (3.12) are the outer

mean (L1)-versions of the asymptotic equicontinuity conditions respect to Gn and ĜWn . By Lemma
2.3.11, page 115 in [15], it follows that these L1-versions are equivalents to the outer probability

versions. Indeed, just applying the Markov’s inequality, we have that if E∗
∥∥∥EnP

∥∥∥
Fδn
→ 0, for any

sequence δn ↓ 0, then it follows that
∥∥∥EnP

∥∥∥
Fδn

P∗−→ 0 for any sequence δn ↓ 0, and this is also true

for BnP
. Therefore, the asymptotic tightness for both processes is equivalent, and this completes the

proof.

We finish the section presenting three results, which are a consequence of our Theorem 2.

Corollary 3. Under the conditions of the Theorem 2, we have(
1√
n

n∑
j=1

(δYj − P),
1√
n

n∑
j=1

ξnj(δYj − P)

)
weakly−−−−→ (G, G̃)

in `∞(FΓ)× `∞(FΓ), where G and G̃ are independent P-Brownian bridges.

Proof. Indeed, (Gn, ĜWn ) is jointly asymptotically tight. Furthermore, the two coordinates are uncor-

related, and the joint marginals converge to multivariate normal distributions. So, (Gn, ĜWn ) converge
jointly in distribution to the vector (G, G̃).

Corollary 4. The following conditions are equivalent:
(i) FΓ is P-Donsker.

(ii) Ĝn =
√
n(P̂n − Pn) converges weakly to a tight process in `∞(FΓ).

Proof. This is a direct consequence of the Theorem 2 proved above.
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Corollary 5. Finally,(
1√
n

n∑
j=1

(δYj − P),
1√
n

n∑
j=1

Mnj(δYj − P)

)
weakly−−−−→ (G, G̃)

in `∞(FΓ)× `∞(FΓ), where G and G̃ are independent P-Brownian bridges.

Proof. This is a direct consequence of the Corollary 4.

4. CONCLUSIONS

It is evident that our main result above developed describes a theoretical inferential problem of the
type

√
n(θn − θ)

weakly−−−−→ B ∼ N(0,Λ)⇔
√
n(θ̂n − θn)

weakly−−−−→ B
′
∼ N(0,Υ)

in `∞(FΓ), where θ(fα) := P(fα), θn(fα) := Pn(fα) and θ̂n(fα) := P̂Wn (fα), respectively, for any
fα ∈ FΓ, with B(fα) := G(fα) and B′(fα) := G̃(fα). The Theorem 2 is an unconditional result,
in the sense that the original data of functions or coordinate projections of incomes {Yj}nj=1 is not
fixed in the statement. However, according with [10], in pages 174–175, or [15], in pages 176-177,
among others, our unconditional central limit theorem represents the basis for developing conditional
results that go to the hand with in probability and outer-almost-sure conditional central limit theorems.

On the other hand, if we consider, for example the finite class of functions FΓ = {fα : α = 0, 1, 2}, then
we could prove that conditioning the data, our FGT bootstrap empirical process converges weakly to
a normal distribution with their respective parameters, where FGT (Yj , z, 0) is a FΓ-indexed empirical
process centered and normalized that reflects the incidence of poverty (the number of poor individuals),
FGT (Yj , z, 1) is a process that reflects the intensity or severity of poverty (the degree of poverty of
the individuals), and FGT (Yj , z, 2) is interpreted as the depth or inequality among poor (the income
distribution of the poor individuals). Thus, in a further paper we could develop and discuss this and
others theoretical results more refined and deeper in this framework.

A TOOLS

Note 6. Lemma 8 is similar to the Lemmas 2.9.1, pages 177–179 in [15]; or 2.2, pages 595–596 in
[16]. Lemma 10 is a new brand result proposed by the authors. Lemma 11 is an alternative proof to
Lemma 4.7, page 2071 in [12], considering now the random weights ξnj. For more details, see [9],
and for a theoretical discussion about exchangeably weighted bootstraps and other classical types of
bootstrap, see e.g. [6, 12, 16].

Remark 7. The FGT empirical process centered and normalized defined in (2.1) through their tra-
jectories can alternatively be denoted by

FGT (Yj , z, α) =
√
n

[
1

n

q∑
j=1

(
z − Yj
z

)α
− P(fα)

]
, (A1)
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where α ≥ 0, and z ∈ R+. Let P(fα) = EF(fα(Y )), specifically, with α = 2 it follows that

Gn(f2) =
√
n

[
1

n

n∑
j=1

(
z − Yj
z

)2

I{Yj < z} − EF(f2(Y ))

]

=
√
n

(
Fn(z)− 2

nz

n∑
j=1

YjI{Yj < z} (A2)

+
1

nz2

n∑
j=1

Y 2
j I{Yj < z} − P(f2)

)
.

Applying expected value in (A2), it follows that

E[Gn(f2)] ≤
√
nF(z)− 2√

nz

n∑
j=1

E(YjI{Yj < z})

+
1√
nz2

n∑
j=1

E(Y 2
j I{Yj < z})−

√
nP(f2). (A3)

Since n, z <∞ and F(z) = P(Y ≤ z) ≤ 1, the right-hand side of (A3) is finite if E(Y 2
j I{Yj < z}) <∞,

for all j = 1, 2, ..., n. Hence, for each ω ∈ XN fixed the trajectories of the empirical process explicitly
represented in (A1) are well defined (in mean) for 0 ≤ α ≤ 2, if the second moment of the projections
YjI{Yj < z} is finite for all j = 1, 2, ..., n. Analogously, it is not difficult to see that for α = 3, the
condition can be denoted by E(Y 3

j I{Yj < z}) < ∞, and then, we can extend it for all α ≥ 0 through
their p-th moments.

Lemma 8. Given (XN,AN,PN) × (W,D,PW ) × (Z, C,Pε), the basic prob. space. Let {Zj}nj=1 be
i.i.d. empirical processes such that E∗ [‖Zj‖FΓ

] < ∞ for each j ≤ n, independent of the i.i.d.
Rademacher variables {εj}nj=1. Then for every i.i.d. sample {ξnj}nj=1 of exchangeable random weights
with ‖ξn1‖2,1 <∞ and E [ξnj ] = µ independent of {Zj}nj=1 and any 1 ≤ n0 < n,

1

2
‖ξn1 − µ‖1E∗

∥∥∥∥ 1

n

n∑
j=1

εjZj

∥∥∥∥
FΓ

 ≤ E∗
∥∥∥∥ 1

n

n∑
j=1

ξnjZj

∥∥∥∥
FΓ


≤ 2n0E∗ [‖Z1‖FΓ

]E
[

max
1≤j≤n

|ξnj |
n

]

+ 4

(
‖ξn1‖2,1√

n

)
(A4)

max
n0<k≤n

E∗
∥∥∥∥∥∥ 1√

k

k∑
j=n0+1

εjZj

∥∥∥∥∥∥
FΓ

 .

For symmetrically distributed variables ξnj around µ, the constants 1/2, 2 and 4 can all be replaced
by 1, and µ in the left-hand side of (A4) is removed.

Proof. Respect to the inequality on the left-hand side. If the random weights ξnj are symmetrically
distributed around µ, then the random variables εj |ξnj | possess the same joint distribution as the ξnj ,
and by properties of conditional expectation, Jensen’s inequality and independence between the terms
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in the summation, we have

E∗
∥∥∥∥∥∥ 1

n

n∑
j=1

ξnjZj

∥∥∥∥∥∥
FΓ

 = E∗
∥∥∥∥∥∥ 1

n

n∑
j=1

εj |ξnj |Zj

∥∥∥∥∥∥
FΓ


= E∗

E
∥∥∥∥∥∥ 1

n

n∑
j=1

εj |ξnj |Zj

∥∥∥∥∥∥
FΓ


≥ E∗

∥∥∥∥∥∥E
 1

n

n∑
j=1

εj |ξnj |Zj

∥∥∥∥∥∥
FΓ


= E∗

∥∥∥∥∥∥ 1

n

n∑
j=1

εjZjE|ξnj |

∥∥∥∥∥∥
FΓ


= ‖ξn1‖1E∗

∥∥∥∥∥∥ 1

n

n∑
j=1

εjZj

∥∥∥∥∥∥
FΓ

 .
For the general case, let {ξ′nj}nj=1 be an independent copy of {ξnj}nj=1. Then applying the same
argument of above, we obtain

‖ξnj − ξ
′

nj‖1 = E[|ξnj − ξ
′

nj |]

= E
[
E
[∣∣∣ξnj − ξ′nj |∣∣∣ ξnj]]

≥ E
[
E
[
ξnj − ξ

′

nj

∣∣ξnj]]
= E

[
|ξnj − E(ξ

′

nj)|
]

= E [|ξnj − E(ξnj)|]
= ‖ξnj − µ‖1.

Since the random variables (ξnj − ξ
′

nj) are symmetric and have the same joint distribution as the

random variables εj |ξnj − ξ
′

nj |, applying the inequality already proved, we obtain

‖ξn1 − µ‖1E∗
∥∥∥∥∥∥ 1

n

n∑
j=1

εjZj

∥∥∥∥∥∥
FΓ

 ≤ ‖ξn1 − ξ
′

n1‖1E∗
∥∥∥∥∥∥ 1

n

n∑
j=1

εjZj

∥∥∥∥∥∥
FΓ


≤ E∗

∥∥∥∥∥∥ 1

n

n∑
j=1

εj |ξnj − ξ
′

nj |Zj

∥∥∥∥∥∥
FΓ


= E∗

∥∥∥∥∥∥ 1

n

n∑
j=1

(ξnj − ξ
′

nj)Zj

∥∥∥∥∥∥
FΓ


≤ 2E∗

∥∥∥∥∥∥ 1

n

n∑
j=1

ξnjZj

∥∥∥∥∥∥
FΓ

 .
In the last step, we use the triangle inequality and the fact that the random weights ξnj and ξ

′

nj have
the same distribution. Indeed
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∥∥∥∥∥∥ 1

n

n∑
j=1

(ξnj − ξ
′

nj)Zj

∥∥∥∥∥∥
FΓ

=

∥∥∥∥∥∥ 1

n

n∑
j=1

ξnjZj −
1

n

n∑
j=1

ξ
′

njZj

∥∥∥∥∥∥
FΓ

≤

∥∥∥∥∥∥ 1

n

n∑
j=1

ξnjZj

∥∥∥∥∥∥
FΓ

+

∥∥∥∥∥∥ 1

n

n∑
j=1

ξ
′

njZj

∥∥∥∥∥∥
FΓ

,

and by this inequality we can write

E∗
∥∥∥∥∥∥ 1

n

n∑
j=1

(ξnj − ξ
′

nj)Zj

∥∥∥∥∥∥
FΓ

 ≤ 2E∗
∥∥∥∥ 1

n

n∑
j=1

ξnjZj

∥∥∥∥
FΓ

 .
To prove the inequality of the right hand-side in (A4), if we assume that the bootstrap weights ξnj
are symmetrically distributed, then

E∗
∥∥∥∥ 1

n

n∑
j=1

ξnjZj

∥∥∥∥
FΓ

 = E∗
∥∥∥∥ 1

n

n∑
j=1

εj |ξnj |Zj
∥∥∥∥
FΓ


= E∗

∥∥∥∥ 1

n

∫ ∞
0

( n∑
j=1

I{t ≤ |ξnj |}εjZj
)
dt

∥∥∥∥
FΓ


≤

∫ ∞
0

E∗
∥∥∥∥ 1

n

]{j≤n:|ξnj |≥t}∑
j=1

εjZj

∥∥∥∥
FΓ

 dt
≤

∫ ∞
0

 n∑
k=1

PW

 n∑
j=1

I{|ξnj | ≥ t} = k


E∗
∥∥∥∥∥∥ 1

n

k∑
j=1

εjZj

∥∥∥∥∥∥
FΓ

 dt

≤

∫ ∞
0

PW

 n∑
j=1

I{|ξnj | ≥ t} > 0

 dt


max
k≤n0

E∗
∥∥∥∥ 1

n

k∑
j=1

εjZj

∥∥∥∥
FΓ




+

 1

n

∫ ∞
0

n∑
k=n0+1

√
k PW

 n∑
j=1

I{|ξnj | ≥ t} = k

 dt


 max
n0<k≤n

E∗
∥∥∥∥∥∥ 1√

k

k∑
j=n0+1

εjZj

∥∥∥∥∥∥
FΓ



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≤
(∫ ∞

0

PW
{

max
1≤j≤n

|ξnj | ≥ t
}
dt

)
n0

n
E∗[‖Z1‖FΓ

]

+
‖ξn1‖2,1√

n
max

n0<k≤n

{
E∗
∥∥∥∥ 1√

k

k∑
j=n0+1

εjZj

∥∥∥∥
FΓ

}

= n0E∗[‖Z1‖FΓ
]E
[

max
1≤j≤n

|ξnj |
n

]
+
‖ξn1‖2,1√

n
max

n0<k≤n

{
E∗
∥∥∥∥ 1√

k

k∑
j=n0+1

εjZj

∥∥∥∥
FΓ

}
.

With respect to the third term in the last inequality, note that

∑
k>n0

√
kPW

{ n∑
j=1

I{|ξnj | ≥ t}k
}

= E
( n∑
j=1

I{|ξnj | ≥ t}
)1/2

≤
(
E

n∑
j=1

I{|ξnj | ≥ t}
)1/2

=

√√√√E
n∑
j=1

I{|ξnj | ≥ t}

=
√

E(]{j ≤ n : |ξnj | ≥ t})

=
√
nPW (|ξn1| ≥ t)

=
√
n
√
PW (|ξn1| ≥ t).

For the general case, note that

E∗
∥∥∥∥ 1

n

n∑
j=1

[ξnj − E(ξ
′

nj)]Zj

∥∥∥∥
FΓ

 = E∗
∥∥∥∥ 1

n

n∑
j=1

[ξnj − E(ξnj)]Zj

∥∥∥∥
FΓ


≤ E∗

∥∥∥∥ 1

n

n∑
j=1

(ξnj − ξ
′

nj)Zj

∥∥∥∥
FΓ

 .
If E[ξnj ] = 0 for each j = 1, 2, ..., n, obviously

E∗
∥∥∥∥ 1

n

n∑
j=1

ξnjZj

∥∥∥∥
FΓ

 ≤ E∗
∥∥∥∥ 1

n

n∑
j=1

(ξnj − ξ
′

nj)Zj

∥∥∥∥
FΓ

 .
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And then, we can apply the upper bound for (ξnj − ξ
′

nj) to obtain

E∗
∥∥∥∥ 1

n

n∑
j=1

(ξnj − ξ
′

nj)Zj

∥∥∥∥
FΓ

 ≤ n0E∗[‖Z1‖FΓ
]E

[
max

1≤j≤n

|ξnj − ξ
′

nj |
n

]

+

(
‖ξn1 − ξ

′

n1‖2,1√
n

)
 max
n0<k≤n

E∗
∥∥∥∥∥∥ 1√

k

k∑
j=n0+1

εjZj

∥∥∥∥∥∥
FΓ


 .

For the first term in the right-hand side of the inequality, ‖ξnj−ξ
′

nj‖1 ≤ 2‖ξnj‖1 by triangle inequality.

For the second one, note that for any pair of random variables ξnj and ξ
′

nj ,

PW (|ξnj + ξ
′

nj | ≥ t) ≤ PW (|ξnj | ≥ t/2) + PW (|ξ
′

nj | ≥ t/2),

and
√
a+ b ≤

√
a+
√
b for a, b ≥ 0, therefore

‖ξn1 + ξ
′

n1‖2,1 =

∫ ∞
0

√
PW (|ξn1 + ξ

′
n1| ≥ t)dt

≤
∫ ∞

0

√
PW (|ξn1| ≥ t/2)dt+

∫ ∞
0

√
PW (|ξ′n1| ≥ t/2)dt

= 2

∫ ∞
0

√
PW (|ξn1| ≥ t)dt+ 2

∫ ∞
0

√
PW (|ξ′n1| ≥ t)dt

= 2‖ξn1‖2,1 + 2‖ξ
′

n1‖2,1.

Since ‖ξn1−ξ
′

n1‖2,1 ≤ 4‖ξn1‖2,1, the right-hand side of (A4) it is true in both cases, and this completes
the proof.

Remark 9. Any Donsker class is Glivenko-Cantelli too; but the reciprocal is not true. To see this,
following e.g. [13], pages 87–88, by the continuity of the uniform norm, particularly we have

Gn
weakly−−−−→ G⇒ ‖Gn‖FΓ

weakly−−−−→ ‖G‖FΓ
.

This implies that
1√
n
‖Gn‖FΓ

converges in law (distribution) to zero, and then converges in probability

to the origin, and finally
1√
n
‖Gn‖FΓ

= ‖Pn − P‖FΓ

a.s.∗−−−→ 0.

In fact, the implication is an application of Slutsky’s Lemma, because this result shows that every
Donsker class is a Glivenko-Cantelli in probability, and this is also true with “in probability” replaced
by “almost surely”.

Lemma 10. Given (XN,AN,PN) × (W,D,PW ) × (Z, C,Pε), the basic pro-duct prob. space. Let
{Zj}nj=1 be i.i.d. empirical processes with Zj := δYj − P such that E[Zj(fα)] = 0 and Yj : XN → X
i.i.d. ∼ P for all j = 1, 2, ..., n and fα ∈ FΓ, independent of the i.i.d. Rademacher variables {εj}nj=1.
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Then for every i.i.d. sample {ξnj}nj=1 of random weights independent of {Zj}nj=1 that satisfies B1

and B4 with ξnj := Wnj − 1 such that {Wnj}nj=1 satisfies A1-A2, if ĜWn converges weakly in `∞(FΓ)

to a tight Gaussian process G̃, then E∗ [‖Z1‖FΓ
] <∞.

Proof. Let {Z ′j}nj=1 be an independent copy of {Zj}nj=1, such that we have Z
′

j = δY ′j
− P. Then by

A2,

ĜWn − ĜW
′

n =
1√
n

n∑
j=1

(Wnj − 1)(Zj − Z
′

j)

=
1√
n

n∑
j=1

ξnj(Zj − Z
′

j)

=
1√
n

n∑
j=1

|ξnj |sign(ξnj)εj(Zj − Z
′

j) (in distribution)

=
1√
n

n∑
j=1

|ξnj |εj(Zj − Z
′

j), (in distribution) (A5)

and by the hypothesis of weak convergence, it follows that the difference between both processes in
(A5) converges to a limit Gaussian process G̃ − G̃′ in `∞(FΓ). By Proposition A.2.3, page 440 in
[15], it follows that the uniform norm respect to G̃− G̃′ , ‖G̃− G̃′‖FΓ

has moments of all orders. Let

ε = E
[∥∥∥G̃− G̃′

∥∥∥2

FΓ

]
<∞, then for all x > 0,

P
(∥∥∥G̃− G̃

′
∥∥∥
FΓ

≥ x
)
≤ ε

x2
, (A6)

applying Markov’s inequality.

Using (A6) and the portmanteau Theorem like in [15], Lemma 2.3.9, pages 113–114; or [16], Theorem
4.4, pages 602–605, there exists N ∈ N, such that for all n ≥ N ,

P∗
∥∥∥∥∥∥

n∑
j=1

|ξnj |εj(Zj − Z
′

j)

∥∥∥∥∥∥
FΓ

> x
√
n

 ≤ 2P
(∥∥∥G̃− G̃

′
∥∥∥
FΓ

≥ x
)

≤ 2ε

x2
, (A7)

and by Levy’s second inequality of the Proposition A.1.2, page 431 in [15], we have

P∗
∥∥∥∥∥∥

n∑
j=1

|ξnj |εj(Zj − Z
′

j)

∥∥∥∥∥∥
FΓ

> x
√
n


≥ 1

2
P∗
(

max
1≤j≤n

|ξnj ||εj |
∥∥∥Zj − Z ′j∥∥∥FΓ

> x
√
n

)

=
1

2
P∗
(

max
1≤j≤n

|ξnj |
∥∥∥Zj − Z ′j∥∥∥FΓ

> x
√
n

)
,

then combining this result with (A7), it follows

P∗
(

max
1≤j≤n

|ξnj |‖Zj − Z
′

j‖FΓ
> x
√
n

)
≤ 4ε

x2
. (A8)
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Let π be a random permutation of the first n terms. Suppose that J ∈ {1, . . . , n} satisfies

max
1≤j≤n

1√
n

∥∥∥Zj − Z ′j∥∥∥FΓ

=
1√
n

∥∥∥ZJ − Z ′J∥∥∥FΓ

. (A9)

Then by the condition B1 of exchangeability of the random weights ξnj ,

max
1≤j≤n

1√
n
|ξnj |

∥∥∥Zj − Z ′j∥∥∥FΓ

= max
1≤j≤n

1√
n
|ξnπ(j)|

∥∥∥Zj − Z ′j∥∥∥FΓ

, (A10)

in distribution. π is a random permutation independent of the {Wnj}, {Zj} and {Z ′j}. Therefore, let∥∥∥Zj − Z ′j∥∥∥FΓ

= bj and
∥∥∥ZJ − Z ′J∥∥∥FΓ

= bJ , conditioning on the Wnj ’s, it follows that using (A10) the

probability on the left-hand side of (A8) is equal to

EWP∗
(

1√
n

max
1≤j≤n

|ξnπ(j)|bj > x

∣∣∣∣W) ≥ EWP∗
(

1√
n
|ξnπ(J)|bJ > x

∣∣∣∣W)
= EW

(
1

n

n∑
j=1

I
{

1√
n
|ξnj |b∗J > x

})

≥ EW
(

1

n

n∑
j=1

I{|ξnj | > ε}

I
{

1√
n
b∗J >

x

ε

})

=

(
PW (|ξn1| > ε)

I
{

1√
n
b∗J >

x

ε

})
. (A11)

Given

P (Y > cE[Y ]) ≥ (1− c)2 (E[Y ])
2

E [Y 2]
, (A12)

the Paley-Zygmund argument, where Y ≥ 0 and 0 ≤ c ≤ 1. Using (A12) with cE[Y ] = ε and Y = |ξn1|
on the right-hand side of (A11), we have

PW (|ξn1| > ε)

(
I
{

1√
n
b∗J >

x

ε

})

≥

(
(1− ε/E[|ξn1|])2

(E [|ξn1|])2

E [|ξn1|2]

)(
I
{

1√
n
b∗J >

x

ε

})
. (A13)

Combining (A8), (A11) and (A13), this implies that(
(1− ε/E[|ξn1|])2

(E [|ξn1|])2

E [|ξn1|2]

)
I
{

1√
n
‖ZJ − Z

′

J‖∗FΓ
>
x

ε

}

≤ 4ε

x2
, (A14)
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and by (A9), respect to (A14) we have that(
(1− ε/E[|ξn1|])2

(E [|ξn1|])2

E [|ξn1|2]

)
I
{

max
1≤j≤n

1√
n

∥∥∥Zj − Z ′j∥∥∥∗FΓ

>
x

ε

}

≤ 4ε

x2
. (A15)

By the property E∗[IB ] = P∗(B), in (A15) it follows(
(1− ε/E[|ξn1|])2

(E [|ξn1|])2

E [|ξn1|2]

)
x2 P∗

(
max

1≤j≤n

1√
n

∥∥∥Zj − Z ′j∥∥∥FΓ

>
x

ε

)
≤ 4ε. (A16)

By B4, and the fact that the convergence in quadratic mean of |ξn1| to b > 0 implies the convergence
in mean to this constant, then the first term of (A16) converges to a positive constant. Respect to
the second term,

lim
x→∞

x2P∗
(

max
1≤j≤n

1√
n

∥∥∥Zj − Z ′j∥∥∥FΓ

>
x

ε

)
= 0.

That is, P∗
(

max
1≤j≤n

1√
n

∥∥∥Zj − Z ′j∥∥∥FΓ

>
x

ε

)
= o(x−2), as x → ∞. Now, let x

′
=

x
√
n

ε
, since

P∗
(

max
1≤j≤n

∥∥∥Zj − Z ′j∥∥∥FΓ

> x
′
)

has a superior tail of order o(x−2), then all its moments of order

0 < r < 2 respect to max
1≤j≤n

∥∥∥Zj − Z ′j∥∥∥FΓ

exist; i.e., E∗
[

max
1≤j≤n

∥∥∥Zj − Z ′j∥∥∥rFΓ

]
< ∞, for 0 < r < 2. In

particular, we have E∗
[

max
1≤j≤n

∥∥∥Zj − Z ′j∥∥∥FΓ

]
<∞, and by (A9) it follows that

E∗
[∥∥∥Z1 − Z

′

1

∥∥∥
FΓ

]
<∞. (A17)

Finally, by the convexity of the norm ‖ · ‖FΓ
together with E[Z

′

1] = 0, respect to (A17) we have

E∗
[
‖Z1‖FΓ

]
= P∗

(
‖fα(Y1)− P(fα)‖FΓ

)
<∞,

applying the Jensen’s inequality.

Lemma 11. Let ξ = {|ξnj | : j = 1, 2, ..., n, n = 1, 2, ...} be a triangular array of non-negative and
exchangeable random variables, defined on the probability space (W,D,PW ). If ξ satisfies conditions
B2 and B3, this implies that the sequence {|ξn1|}n∈N is uniformly square-integrable; that is,

lim
t→∞

lim sup
n→∞

E(|ξn1|2I{|ξn1| ≥ t}) = 0. (A18)

Furthermore, B2 and B3 also imply that

E
[

max
1≤j≤n

|ξnj |
n

]
→ 0. (A19)

Proof. Let
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E(|ξn1|2 · I{|ξn1| ≥ t}) =

∫ ∞
0

PW (|ξn1|2 · I{|ξn1| ≥ t} > x)dx

=

∫ ∞
0

PW (|ξn1| · I{|ξn1| ≥ t} >
√
x)dx

=

∫ ∞
0

PW (|ξn1| · I{|ξn1| ≥ t} > u)2udu

=

∫ t

0

PW (|ξn1| · I{|ξn1| ≥ t} > u)2udu

+

∫ ∞
t

PW (|ξn1| · I{|ξn1| ≥ t} > u)2udu. (A20)

Since

PW (|ξn1|I{|ξn1| ≥ t} > u) =

{
PW (|ξn1| ≥ t) si 0 < u ≤ t,
PW (|ξn1| ≥ u) si u > t,

where PW (|ξn1|I{|ξn1| ≥ t} > u) = PW (|ξn1| ≥ t ∨ u), such that t ∨ u denotes the maximum between
t and u. Respect to (A20) we obtain

E(|ξn1|2I{|ξn1| ≥ t}) =

∫ t

0

PW (|ξn1| ≥ t)2udu+

∫ ∞
t

PW (|ξn1| ≥ u)2udu

= t2PW (|ξn1| ≥ t)

+ 2

∫ ∞
t

u
√

PW (|ξn1| ≥ u)
√
PW (|ξn1| ≥ u)du. (A21)

By B3, let ε > 0. We can choose T large enough so that t2PW (|ξn1| ≥ t) ≤ ε2

4
for each n ∈ N when

t ≥ T ; that is,

PW (|ξn1| ≥ t) ≤
ε2

4t2
.

Furthermore, for u > t,

PW (|ξn1| ≥ u) ≤ ε2

4u2 ⇒
√
PW (|ξn1| ≥ u) ≤ ε

2u
.

Hence, in (A21) it follows that

E(|ξn1|2I{|ξn1| ≥ t}) ≤ ε2

4
+ ε

∫ ∞
t

√
PW (|ξn1| ≥ u)du

≤ ε2

4
+ ε‖ξn1‖2,1,

and by virtue of B2, since ε is arbitrary, the expression (A18) it is satisfied.

To prove (A19), let ε > 0. From (A18) we can choose t large enough so that

lim sup
n→∞

t2PW (|ξn1| > t) ≤ lim sup
n→∞

E(|ξn1|2I{|ξn1| > t}) ≤ ε2,
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for t ≥ ε. Then

E
[

max
1≤j≤n

|ξnj |
]

=

∫ ε

0

PW
(

max
1≤j≤n

|ξnj | > t

)
dt+

∫ ∞
ε

PW
(

max
1≤j≤n

|ξnj | > t

)
dt

≤ ε+

∫ ∞
ε

t2PW (|ξn1| > t)t−2dt

≤ ε+ ε2 1

ε
= 2ε,

and since ε is arbitrary, this finishes the proof of the lemma.
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[6] GINÉ, E. and ZINN, J. (1990): Bootstrapping General Empirical Measures. The Annals of
Probability, 18(2), 851–869. AAa1055437
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