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ABSTRACT

We assume the Foster-Greer-Thorbecke (FGT') poverty index as a centered and normalized empirical
process indexed by a particular Donsker class or collection of functions and define this poverty index
as a bootstrapped empirical process, to show that the weak convergence of the FGT empirical
process centered and normalized is a necessary and sufficient condition for the weak convergence of
the FGT bootstrap empirical process centered and normalized. Thus, this result reflects that under
certain conditions, the consistency in weak convergence of the F'GT empirical process considered
as a classical estimator of poverty (statistics) and the consistency in weak convergence of the FGT
bootstrap empirical process considered as a bootstrap estimator of poverty (bootstrap statistics) are
asymptotically equivalents for random samples of incomes statistically large and representative of a
statistical universe of households.
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RESUMEN

Nosotros asumimos el indicador de pobreza de Foster-Greer-Thorbecke (FGT) como un proceso
empirico centrado y normalizado indexado por una particular clase o coleccién de funciones Donsker
y definimos este indicador de pobreza como un proceso empirico del tipo bootstrap, para probar que
la convergencia débil del proceso empirico FGT centrado y normalizado es una condicién necesaria
y suficiente para la convergencia débil del proceso empirico bootstrap FGT centrado y normalizado.
Asi, este resultado refleja que bajo ciertas condiciones, la consistencia en convergencia débil del pro-
ceso empirico FGT considerado como un estimador cldsico de pobreza (estadistico) y la consistencia
en convergencia débil del proceso empirico bootstrap FGT considerado como un estimador boot-
strap de pobreza (estadistico bootstrap) son asintéticamente equivalentes para muestras aleatorias
de ingresos estadisticamente grandes y representativas de un universo estadistico de hogares.
PALABRAS CLAVE: Indicador de pobreza de Foster-Greer-Thorbecke, Convergencia de procesos

empiricos, Clases Donsker, Procesos empiricos bootstrap.

1. INTRODUCTION

The problem of estimating one-dimensional poverty measures is theoretically addressed in this paper,
developing a central limit theorem, in the framework of bootstrap empirical processes, and to achieve
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this goal first we introduce some basic aspects. The properties of the aziomatic method of poverty
introduced by Sen in 1976 [see [14]], provided the basis to study the problem posed as a phenomenon
that depends only on income, acquiring this focus a greater mathematical rigor within the economic
theory. In fact, several measures of poverty begin are proposed, all of which are supported in the Sen’s
aziomatic definition.

This type of measures is commonly known as one-dimensional poverty indices, because in their con-
struction, only one variable or economic dimension is considered: the income [see [17], for a detailed
discussion about the axiomatic method and all the one-dimensional poverty indices proposed in the
literature].

Formally, let N be a statistical universe of individuals (let say households), such that for each one

of them it is possible to determine its level of income among other features, for any random sample

of n individuals withdrawn from this population, a measure or classic index of poverty is a function

P Riﬂ — [0, 1], where the value of P(y, z) indicates the degree or level of poverty associated with
n

the wvector of incomes y = (y1,...,yn) € R} and the poverty line fired = € Ry, such that any j-th
individual of the random sample is considered poor if y; < z [see e.g. [13], and [8]].

In this framework, one of the most important measures is the Foster-Greer-Thorbecke (F'GT') poverty
index, defined in [5] by

z

1< z—yi \"
FGT(y,2,0) = — Z (ﬂ) : (1.1)
j=1
and emphasizes the degree of aversion to poverty represented by a parameter o > 0, where g the
number of poor individuals for a random sample of size n. In the particular cases o = 0, 1,2, we have
that:
(i) FGT(y, z,0) reduces to H(y,z) = g, the headcount ratio of poor individuals that reflects the
n

incidence of poverty.
(i) FOT(. 200 = 2 (1= 2) = Hly.2)1(02) o= HI(0.2),

14
where p = — Zyj is the average income of the poor individuals in the sample, I(y, z) is defined as
q “
j=1
the income gap ratio, and consequently HI(y, z) is the combined income gap ratio that reflects the
intensity or severity of poverty as the product of the proportion of the poor due to the poverty gap.
(#i1) FGT(y, z,2) is interpreted as the depth or inequality among poor.

The results introduced by Lo and Seck in [11], establish that the FGT poverty index defined in (1.1)
understood as an empirical process satisfies a central limit theorem. However, in this article we will
introduce an important weak convergence relationship between the F'GT empirical process of Lo and
Seck and a very particular F'GT bootstrap empirical process, defined by us below in the next part or
section.

Our theoretical proposal presented here is a particular contribution over the literature: formally
states that under certain conditions, the consistency in weak convergence of the centered and normal-
ized FGT empirical process of Lo and Seck considered as a classical estimator of poverty (statistics),
and the consistency in weak convergence of our centered and normalized FGT bootstrap empirical
process considered as a bootstrap estimator of poverty (bootstrap statistics), are asympto-tically equiv-
alents for random samples of incomes statistically large and representative of a statistical universe of
households. In fact, our theoretical result goes hand in hand with [1] and [7] among others, where
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these point out precisely that the classic inference for this type of one-dimensional poverty indices
such as the FGT', when only small random samples of incomes are available, can present problems in
assuming the convergence of the statistics to the normal distribution; and naturally the same analysis
is valid for the corresponding bootstrap statistics.

This paper is organized as follows. In Section 2, we present the problem statement. The Section 3
presents our main result and some consequences. The conclusions are given in Section 4. Finally, the
Appendix contains all the tools required for the comprehension of the central proof in our theoretical
proposal.

2. THE PROBLEM
Lo and Seck in [11] define the class of functions Fr = {fa : @ > 0}, where

Z—X

falz) = T{x < z}.

1 n
For any ii.d. collection {Y;}}_; with empirical measure P, = EZCSY]' , each projection Y; on
j=1
(XN, AN PY) represents the observed level of income for the j-th statistical individual of the random
sample of size n in the probability space (X, A,P), such that for each w = (y1,y2,...) € AN fixed as
infinite-numerable sequence of sample points (incomes), we have that the trajectories or realizations
are

Gulfo) = V(B = B)a) = = D (fal¥) —B(L). (2.1)
=1
where
Pall) = =3 fa¥i) = 2 30| F Ty < )
= / fa(yj)dpn(yj)
X
- /Z — aan(yj)
0 z
= Er, [fa(Y))], (2.2)
and with mean functions given by
(1) = [ty = [ |F2] ) = s ), (2.3

HY; <z:1<j<n}
n

1 n
where F(z) = P(Y < z) and F,,(2) = EZI{YJ <z} = respectively, with
j=1

z € Ry fixed and ¢ = nlF, ().
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On the other hand, the classical nonparametric bootstrap empirical measure introduced by Efron in
[3, 4] is defined as

where for any collection of coordinate projections Y7, ...,Y, iid.~ P, Y1, ,)Afn denotes a bootstrap
sample with replacement of P,. Following [12], among others, we can consider a triangular array
of exchangeable random variables W = {W,; : n € Nand j = 1,...,n.} on (W, D,Pw), to define a

general empirical measure
n
1
= E Wjdy;,
j=1

which is precisely known as the exchangeably weighted bootstrap empirical measure. Observe that
the random variables W can be interpreted as random weights, in the sense that each component
Wh; reflects the number of times that Y; is selected for the n trials of any bootstrap sample with

replacement. Moreover, the classical measure P,, defined above is a special case of I@’,‘;V obtained by
taking (Wi, oo, W) =W, =M, , with M, = (My1, ..., Mp,) ~ Mult,(n,(1/n,...,1/n)). In what
fo-llows, we assume that W, = (W1, ..., Wy,,,) satisfies the conditions:

Al. Foralne N W, = (Wnl,...,Wnn)/ is exchangeable. That is, for any permutation 7 =
(m(1),...,m(n)) of (1,...,n), the joint distribution of 7(W,,) = (Wypr(1), .-, War(n)) is the same as that
of W,.

A2. Forall j=1,..,n, withn € N, W,; > 0and Y _ W,; =n.
j=1
Now, combining A2 and the result obtained by [16], page 598, we obtain

n 1 n
B B (o) = = D (Wi D6y, ~P)(fa) = + > ns Z5(fa)
= =

for any fo € Fr, where §,; = W,,; — 1 and Z; = dy, — P respectively, with Z;(fo) = fo(Y;) = P(fa).
Therefore

GY = /n(PY -P,) ( anj Y; anﬂp)
nia

is the exchangeably weighted bootstrap empirical measure centered and normalized, and for each f, €
Fr with w = (y1,¥2,...) € XN fixed

GZY(fa) = \/E(PZV_Pn)(foc)

Vi D dal05) ~ S 6P()) (2.4

The expressions (2.1), (2.2) and (2.3) defined above, allow to describe the FGT poverty index defined
n (1.1) as the Fr-indezed FGT empirical process of Lo and Seck centered and normalized, with
Fr C Ly(X, A,P), the compositions fo(Y;) = faoV; : AN 5 X - R, foralla >0, =1,2,..,n
and E(YZ{Y; < z}) < oo; that is, an additional moment condition (see Remark 7). Analogously,
the expression (2.4) represents the trajectories of our Fr-indered FGT bootstrap empirical process
centered and normalized. In [11] it was shown that
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Gy = VP, — P) L G in 0% (Fp),
where the limit process {G(fs) : fo € Fr,a > 0} has covariance function

Cov[fa, f5] = E[fars(V)] = E[fa (V) E[fs(Y)], (2.5)

for every couple fo, fs € Fr. In consequence, this class Fr = {fo : @ > 0} is P-Donsker. Now,
starting from this result, we can develop a Donsker-type charac-terization. For it, we considering the
following conditions for the weights &,;, where B1 is a redefinition of Al:

B1. For alln € N, §n = (&n1, ...,fm)/ is exchangeable.

B2. The norm Ly ; of &, is uniformly bounded. That is,

énill2,1 = / VPw(|€n1] > t)dt < k < o0,
0

where in fact ||-||2,1 is a norm in the space of real random variables, and is square-integrable by exercise
10.5.1 (a) in [10], page 198.

B3. &1 satisfies the weak second-moment condition. That is,

lim limsup t*Pyy (|&un| > t) = 0.

t—=00 poo

B4. Exists b > 0 such that
lim E[|&,1]%] = b.
n— o0

3. THE MAIN RESULT AND SOME CONSEQUENCES

To presents in detail the central proof, first we enunciate the general Theorem 2.1 in [10], pages 15-16,
110; among others, about the two conditions required for the weak convergence of a given empirical
process to a very particular “stochastic object”.

Theorem 1. The empirical process of n random variables, {Yy }nen converges weakly to a tight process
Y in £°(F), if and only if:

. For all finite collection {f1,..., fx} C F, the multivariate distribution of {Yn(f1),...,Yu(fx)} con-
verges to that of {Y (f1),...,Y(fx)} .

. There exists a pseudometric p, for which F is totally bounded and

lim limsup P*( sup Y. (f) — Ya(g)| > 5) =0,
80 n—oo F.9€Fpp(f,9)<8

for all e > 0.

In what follows, as in Theorem 10.1 in [10], pages 175-177; or Theorem 2.9.2 in [15], pages 179-180, we
prove that conditions (1) and (2) of the Theorem 1 enunciated above are equivalent for the processes

{Gulfa) = V(Br = P)(fa) : fa € Fr,a 2 0} and {6} (fa) = V(Y —Pu)(fa) : fa € Fr,a > 0}
defined in (2.1) and (2.4), respectively.
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Theorem 2. Given (XN, AN, PY) x (W, D,Pw) x (Z,C,P.), the basic product probability space. Let
{Z; p?:l be i.i.d. empirical processes, where Z; := dy, — P, with Y : XN 5 X idd ~ P such that
E(Y/Z{Y; < z}) < oo forallj =1,2,...,n, where z € Ry is the poverty line fized. Let {&,;}7_; be i.i.d.
random weights independent of {Z;}"_, that satisfies the conditions B1-B4, with mean E[{,;] = p and
nj = Waj—1, where {W,;}7_, satisfies the conditions A1-A2. Let Jr = {fo : > 0} C Ly(X, A, P)
be a collection or class of functions such that

[e3%

I{yj < Z},

faly;) = ’Z _Zyj

for ally; € X, and z € Ry.. Then the following conditions are equivalent:
(i) Fr is P-Donsker.
(ii) GY' converges weakly to a tight process in {>°(Fr).

Proof. Let
Culfa) = \/ﬁ(i S fulY) - P(fa)),
j=1

be an alternative representation of the centered and normalized process defined in (2.1). Then, its
correspondent limit process G indexed by each f, € Fr, {G(fs) : fo € Fr,a > 0}, can be defined by

G(fa) = fa(Y) = P(fa), (3.1)
where P(f,) = E [fo(Y)]. Indeed, E [G(f,)] =0, and

Cov[G(fa), G(fp)] = E[G(fa), G(fp)]
=E[(fa(Y) = E[fa(V)D(fs(Y) = E[fs(Y)])]
= E[fa(Y)fs(Y)] = E[fa(V)IE[f5(Y)]

= P(fafs) = P(fa)P(f5), (3.2)

for every couple f,, fg € Fr. Hence, we have a limit process with zero mean, and a covariance function
such that its structure go to the hand with the covariance function (2.5) suggested in [11].

Analogously, let
Gy (fa) = \/ﬁ(i > njfalYy) — iZém]P’(fa))»
j=1 j=1

be our bootstrap process defined in (2.4). Then, its correspondent limit process G indexed by each
function f, € Fr, {G(fa) : fa € Fr,a > 0}, can be defined by

G(fa) = &nr[falY) = P(fa)], (3.3)
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where P(f,) = E[fo(Y)]. Indeed, E[G(f.)] = 0, and

Cov [G(£a), G(f5)| = E [G(fa), G(2)]

=E [(fnlfa(y) - gnlE[fa(Y)]) (gnlfﬁ(y) - fnlE[fB(Y)D]
= B[ ]E[fa(Y) f5(Y)] — E[E0JELfa (V)IE[f5(Y)]

=E [&1] [P(fofs) — P(fa)P(f5)]; (34)

for every couple f,, fs € Fr, where by condition B4 the second moment of &,1, E[¢2,] is finite, and
consequently (3.4) is good defined.

Intentionally relaxing the notation, let Fp, = {f1,..., fx} C Fr, then

{Gon(f1), G f2), s Gu(fi)} =% Ny (0, A),

where A = [Ay)i=1,. . k; ¢=1,. x With

Aig = Cov[G(f3), G(fo)] = P(fife) — P(fi)P(fo), (3-5)

and

S IS ' weakl
(G (1) G ()} =% Nu(0, ),
where Y = [Yi¢li=1,... k; ¢=1,... .k With

Yie = Cov[G(fi), G(f0)] = E[E1[B(fife) — P(f)P(fo)], (3.6)

and the covariance structures (3.5) and (3.6) naturally coincide with the functions (3.2) and (3.4),
respectively.

In this instance, we have that the convergence of all finite-dimensional marginal distributions of Gy,
and GY is equivalent to Fr. Thus it suffices to show that the asymptotic equicontinuity conditions of
both processes are equivalent.

Because the limit process G defined in (3.1) is tight, we can assume that exists a pseudometric p
on Fr for which the pseudometric space (Fr,p) is totally bounded and such that G has a version
with almost all its trajectories (sample paths) uniformly continuous for p. That is, for every couple

fow fﬁ S -7:1‘
IG(fo) — G(fs)| < Ap(fa, fs) as., for some X > 0.

Consequently,
(Cfa) = G(fs)]* < Polfas f5))° as.

and

(B0 - GUP] " < Mol £ (37)
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where

E [G(fa) = G(f5)]” = Var [G(fa)] + Var [G(f5)] — 2Cov [G(fa), G(f5)]

= Var, [fa(Y))]) + Var, [fs(Y)] = 2Cov, [fa(Y), f3(Y)]

= /(fa — f)%dP — (/(fa - fﬁ)dP)z (38)

=Var, [fa(Y) — fa(Y)]

pi(foufﬁ%

is a pseudometric for every couple f,, fz € Fr, with (3.8) as in [6], page 853, and [12], page 2054,
among others. Therefore, (3.7) implies that if f, € B,(fi,¢) then fo € B, (fi, Ae), where B,(f;,¢) and
B, (fi, Ae) denote the open balls of center f; and radius € and Ae in (Fr, p) and (Fy, p,), respectively.
This shows that the pseudometric space (Fr, p,) is totally bounded, and the same analysis is true for
the limit process G defined in (3.3), considering the pseudometric spaces (Fr, 9) and (Fr, 0,), with

2
¢ (fos £2) =B [¢21] [ (£~ S - (E[ﬁm] Ju.- fﬁ)dIP’> , (3.9)

for every couple fq, f3 € Fr, where the pseudometrics (3.8) and (3.9) are good defined because the
elements of the class Jr are P-square-integrables.

On the other hand, making a slight modification in our Lemma 8 of the Appendix, it is clear that

HIZE’”

1 *
lem — sl || fze]

Fr

(VAN (3.10)

Jéng]
B | mux 2] 4 s

max € Z;

k
| |
no<k<n { \/%]:nzo+1 J e

for any 1 < ng < n. If the class Fr is P-Donsker, then by Remark 9 it is P-Glivenko-Cantelli too.
Therefore, by Lemma 8.13, page 141 in [10], it follows that E*[|| Z1|| 7.] = P*(|| fa (Y1) =P (fa) |l 7) < o0,
which is also true by Lemma 10, under the hypothesis (ii). Making a slight modification in the Lemma

11, is clear that |:1réla<X EF] — 0, under the conditions B2 and B3. Combining this with (3.10),
<j<n n
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it follows

1
2 l1€n1 = pully Tim sup E* HIZ%

Fs

n—oo

1 n
<limsupE* |||— &niZ
g

Fs

< 4[|&n1l2,1 sup  E* € 3.11
sl sup fzj (311)

Fs

for each ng, § > 0, where F5 = {fo — f5 : fa, f3 € Fr,p:(fa, f3) < 0} and the pseudometric p, (fa, f5)
defined in (3.8) common for both proceses, because without loss of generality, we can put E[¢2,] =1
and E[¢,1] = 1 with the intention that the pseudometric g, (fa, f) defined in (3.9) coincides with
(3.8), where in fact (Fr, p,) is a totally bounded pseudometric space.

By the Lemma 11.2.12, pages 343-344 in [2], the Rademacher variables €1, €s, ..., €, can be removed in
(3.11), at the “cost” of changing the constants, with ||£,1]|2,1 < 0o by condition B2 and ||£,1 — |1 < o0
by B4. Consequently, for any sequence 6, J 0 we conclude that

E* HEn 0= E* HBn o0, (3.12)
Pl Fs, FllFs,
where B, = W and B, = W7 respectively. Both sides of (3.12) are the outer

mean (Lq)-versions of the asymptotic equicontinuity conditions respect to G,, and G,VIV . By Lemma
2.3.11, page 115 in [15], it follows that these Li-versions are equivalents to the outer probability

versions. Indeed, just applying the Markov’s inequality, we have that if E* — 0, for any

Fsp,
sequence d,, | 0, then it follows that HEan - L0 for any sequence d,, | 0, and this is also true
Sn
for B, . Therefore, the asymptotic tightness for both processes is equivalent, and this completes the
proof. O

We finish the section presenting three results, which are a consequence of our Theorem 2.

Corollary 3. Under the conditions of the Theorem 2, we have

(\}ﬁ Zn:(% -P), % anénj(éyj - IP’)) LNy (e )

in £°(Fr) x £2°(Fr), where G and G are independent P-Brownian bridges.

Proof. Indeed, (G, GXV ) is jointly asymptotically tight. Furthermore, the two coordinates are uncor-

related, and the joint marginals converge to multivariate normal distributions. So, (G, G,VLV) converge
jointly in distribution to the vector (G, G). O

Corollary 4. The following conditions are equivalent:
(i) Fr is P-Donsker.

(ii) Gp, = /n(B, —P,) converges weakly to a tight process in (>°(Fr).

Proof. This is a direct consequence of the Theorem 2 proved above. O

182



Corollary 5. Finally,

(\/15 Doy, ~ P 7= 3 My (o, P)) = (6, 6)

in £°°(Fr) x £2(Fr), where G and G are independent P-Brownian bridges.

Proof. This is a direct consequence of the Corollary 4. O

4. CONCLUSIONS

It is evident that our main result above developed describes a theoretical inferential problem of the
type
(0, — 0) L B N0, A) & il — 0,) LM B N0, T)

in £2°(Fr), where 0(fa) = P(fa), On(fa) := Pp(fa) and 0, (fa) := PW(f.), respectively, for any
fo € Fr, with B(fa) := G(fa) and B'(fa) := G(fa). The Theorem 2 is an unconditional result,
in the sense that the original data of functions or coordinate projections of incomes {Y;}_; is not
fixed in the statement. However, according with [10], in pages 174-175, or [15], in pages 176-177,
among others, our unconditional central limit theorem represents the basis for developing conditional
results that go to the hand with in probability and outer-almost-sure conditional central limit theorems.

On the other hand, if we consider, for example the finite class of functions Fr = {f, : @ = 0,1, 2}, then
we could prove that conditioning the data, our FGT bootstrap empirical process converges weakly to
a normal distribution with their respective parameters, where FGT (Y}, z,0) is a Fr-indexed empirical
process centered and normalized that reflects the incidence of poverty (the number of poor individuals),
FGT(Yj,z,1) is a process that reflects the intensity or severity of poverty (the degree of poverty of
the individuals), and FGT (Y}, z,2) is interpreted as the depth or inequality among poor (the income
distribution of the poor individuals). Thus, in a further paper we could develop and discuss this and
others theoretical results more refined and deeper in this framework.

A TOOLS

Note 6. Lemma 8 is similar to the Lemmas 2.9.1, pages 177-179 in [15]; or 2.2, pages 595-596 in
[16]. Lemma 10 is a new brand result proposed by the authors. Lemma 11 is an alternative proof to
Lemma 4.7, page 2071 in [12], considering now the random weights &,;. For more details, see [9],
and for a theoretical discussion about exchangeably weighted bootstraps and other classical types of
bootstrap, see e.g. [6, 12, 16].

Remark 7. The FGT empirical process centered and normalized defined in (2.1) through their tra-
jectories can alternatively be denoted by

FGT(Y}, 2 ) H zq: (Z )a - P(fa)} (A1)

j=1
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where o > 0, and z € Ry. Let P(f,) = Ex(fo(Y)), specifically, with o = 2 it follows that

W S (= j>QI{Yj <2}~ Ea(a¥))

Jj=1

—f(]Fn f—ZYI{Y <z} (A2)

? Z YPT{Y; < z} - P(f2)>'
j=1
Applying expected value in (A2), it follows that

E[Gn(f2)] < v/nF(z) f—ZEYI{Y < z})

+ ﬁﬁ ZE(YfI{Yj < 2}) = VAP(fa). (A3)

Sincen, z < oo and F(z) = P(Y < z) <1, the right-hand side of (A3) is finite if E(YZ{Y; < z}) < oo,
for all j = 1,2,...,n. Hence, for each w € XN fized the trajectories of the empirical process explicitly
represented in (A1) are well defined (in mean) for 0 < a < 2, if the second moment of the projections
Y;Z{Y; < z} is finite for all j = 1,2,...,n. Analogously, it is not difficult to see that for oo =3, the
condition can be denoted by E(YfI{Y] < z}) < 00, and then, we can extend it for all & > 0 through
their p-th moments.

Lemma 8. Given (XN, AN PY) x W, D,Pw) x (Z,C,P,), the basic prob. space. Let {Z;}5—1 be
i.i.d. empirical processes such that E*[||Z;||z.] < oo for each j < n, independent of the i.i.d.
Rademacher variables {e;}7_,. Then for every i.i.d. sample {£,;}7_, of exchangeable random weights
and E [fnj} = p independent of {Z;}7_, and any 1 <ng <n,

1 &
gl —uiE |13 62

IA

Fr Fr

o i
|£nj|

2noE* [|| Z1]| 7] E {max }

1<j<n n

+ 4 (”5%2’1> (A4)

IN

k

!
S VB 2 9%
Jj=no+1 Fr
For symmetrically distributed variables &,; around u, the constants 1/2, 2 and 4 can all be replaced
by 1, and u in the left-hand side of (A4) is removed.

Proof. Respect to the inequality on the left-hand side. If the random weights &,; are symmetrically
distributed around g, then the random variables €;|£,,;| possess the same joint distribution as the &,;,
and by properties of conditional expectation, Jensen’s inequality and independence between the terms
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in the summation, we have

E Eanij = E gzﬁﬂﬁnﬂzj
=1 - =1 o

n

N 1
= E*|E EZGN&HZJ‘

L j=1 Frd
* 1 -
> EE EZejISnlej
L L J=1 Frd
I .
= E gzﬁjzjﬂf\ém‘l
L J=1 Frd
* 1 -
= [|§n1lLE EZ%‘ZJ‘
=1 fr

For the general case, let {g;j};.;l be an independent copy of {{,;}7_;. Then applying the same
argument of above, we obtain

16ni = €njlln = Ellén; — &nyl]

E [E [|6n; — &nl| €ns]]
> E[E [6 — 6]
= E [|6n; —E(&,)]]

E Hgnj - E(&n])”
160 — ell1-

Since the random variables (&,; — 5;;3') are symmetric and have the same joint distribution as the

random variables €;|&,,; — §;j|, applying the inequality already proved, we obtain

. 1 n , . 1 n
len = nIHE || =D ez | < lém =€l |23 6,
i=1 A i=1 A
* 1 - 4
< E Ezejlémfﬁnﬂzj
LI =t Fr
TG :
= E" |- D (& — &7
LI 7=t Fr
* 1 -
< 2B |2 67
L " Fr

In the last step, we use the triangle inequality and the fact that the random weights &,; and §;w- have
the same distribution. Indeed
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and by this inequality we can write

1 n
E*

j=1

(Ens — €0i)Z;

A

S

ing
&
N

’ 1
- Z(’fnj — &) 25 < 2E* H” anjzj

Fr =

To prove the inequality of the right hand-side in (A4), if we assume that the bootstrap weights &,;

are symmetrically distributed, then

1 n
E* ,E .y
nj=1f 74

Fr

IN

IN

IN

o)
¥
0

L[ [zt =0 =
0 k=1 j=1

1 n
- (il Z
H” E :€]|€ ilZ;

j=1

1 [ &
5/ (;I{ts eulbes2 )t

H{i<n:lgn; 1>t}

1
E Z Eij

J=1

Fr

Fr

dt
Fr

k
1
E* =) €7
nzejzj dt
Jj=1 Fr

/OOOPW iI{|§m| >t} >0|dt

j=1
k
M
max ¢ E*||— E Gij
<
kino ’I’L]Il ]:F

%/O >, VkPw ;I{\Smlzt}:k dt

k=no+1
k
E* —1 E Z
max €ili;
7177
no<k<n
onE= \/Ej:noJrl

Fr
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o0 n,
< (/ ]P’W{ max |1 >t}dt) —E*[| 21 7]
0 1<j n
[[€na 1 Ek:
nll||2,1 *
> E 7
+ \/ﬁ nﬂ%}én{ \/E K .7:1"}

Jj=no+1

noE*[|| 21| 7. ]E Lm]axn }
2

1
ﬁ Z Eij

Jj=no+1

n 1€n1ll21 max JE*
VN no<k<n

o

With respect to the third term in the last inequality, note that

Z\FPW{ZI{I&JN}/C} _ E(ﬁ:f{lﬁmw})m

k>ng j=1
n 1/2
< (EZI{IEM- > t}>
j=1
= \IEZH{ISMQt}
j=1
= VEGU <n 16wl > 1))
= VnPw([gu| 2 1)
= VnyPw ([l > 1).
For the general case, note that
1 & . i 1 &
n Z Enj — nj =E n Z[ﬁm (gm)]
j=1 Fr i j=1 Fr
- o
<E || Xt~ )2 ] .
L j: FF

If E¢,;] =0 for each j = 1,2, ..., n, obviously

1 !
<E* Hn S (6w — 60125

Fr Fr

1 n
n Z EnJ’ZJ
j=1
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And then, we can apply the upper bound for (&,; — f;m) to obtain

%Z(ﬁm —6,,)Z; max fafﬂl
j=1

E* < noB* || 21 7 JE

1<j<n n

anl - f?”L1| 2,1
+< Vi )
k

1
max E*||— €
E, 4
k<
no<k<n \/Ej:noﬂ

Fr

Fr

For the first term in the right-hand side of the inequality, ||, —§;Lj Il < 2||€,;]l1 by triangle inequality.

For the second one, note that for any pair of random variables {,; and &, ;,

Py (|€ns + €0l > 1) < P (|€ns] > t/2) + P ([€,;] > t/2),

and va + b < \/a + /b for a,b > 0, therefore

Hgnl + g';zl 2,1 = A \/PW(‘fnl + f;ﬂ' > t)dt

< [ VEwTEal= 72+ [Pl = t/2ar

=2 [ VEwlEalz a2 [\ Pullenl = nar

= 2[€n1ll2,1 + 2[|€n1 12,1

Since |01 — € ll2.1 < 4]|€n1 |21, the right-hand side of (A4) it is true in both cases, and this completes
the proof. m

Remark 9. Any Donsker class is Glivenko-Cantelli too; but the reciprocal is not true. To see this,
following e.g. [13], pages 87-88, by the continuity of the uniform norm, particularly we have

ki ki
Gn = G = |Gull 7 = |G|l 7

1

This implies that — |G, || 7. converges in law (distribution) to zero, and then converges in probability
n

to the origin, and finally

= |IPn — Pl 7 = 0.

1
ﬁHGn“}T
In fact, the implication is an application of Slutsky’s Lemma, because this result shows that every
Donsker class is a Glivenko-Cantelli in probability, and this is also true with “in probability” replaced
by “almost surely”.

Lemma 10. Given (XN, AN PY) x W, D,Pw) x (Z,C,P.), the basic pro-duct prob. space. Let
{Z;}7_, be i.i.d. empirical processes with Zj = 8y, — P such that E[Z;(fa)] = 0 and Y; : XN — X
i.i.d. ~P for all j =1,2,..,n and fo € Fr, independent of the i.i.d. Rademacher variables {€;}7_;.
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Then for every i.i.d. sample {§,;}}_ of random weights independent of {Z;}"_, that satisfies B1
and B4 with &, ; := Wy; — 1 such that {W,;}7_, satisfies A1-A2, if GW converges weakly in 1> (Fr)
to a tight Gaussian process G, then B* [||Z1]|7.] < oo.

Proof. Let {ZJI }7_1 be an independent copy of {Z;}7

=1, such that we have Z;- = (5er — P. Then by
A2,

Z |€n;Isign(&nj)ei (Z; — s ;) (in distribution)

J

Z |&njlei(Z; — Z)), (in distribution) (A5)

and by the hypothesis of weak convergence, it follows that the difference between both processes in
(A5) converges to a limit Gaussian process G-G in €°°£ r). By Proposition A.2.3, page 440 in
[15], it follows that the uniform norm respect to G — G, |G — G'|| 7. has moments of all orders. Let
] < 00, then for all z > 0,
T

x|
o(fo-cl, >

applying Markov’s inequality.
Using (A6) and the portmanteau Theorem like in [15], Lemma 2.3.9, pages 113-114; or [16], Theorem
4.4, pages 602-605, there exists N € N, such that for all n > N,

€
2

IN

(A6)

n

P (6l (2 - 2)|| >avn| < 2P (‘

=1 i
2e
and by Levy’s second inequality of the Proposition A.1.2, page 431 in [15], we have
n
P D nsles(Z5 = 2)|| > avn
i=1 i
> Lps | Z, vn
5P max 6l 2, - 2], > avm
1, :
= §[P’ 1ré1]a<x 1nil ||Z5 — Z; . > avn |,
then combining this result with (A7), it follows
« ’ 4e
P (s 60112 - 27 > ovi) < . (48)
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Let 7 be a random permutation of the first n terms. Suppose that J € {1,...,n} satisfies

1 1 /
s = 2= 7, = =22, (49)
Then by the condition B1 of exchangeability of the random weights &,
L |z - 2| A10)
1<JaSXn % gmr(J) J J Fr ’ (

in distribution 7 is a random permutation independent of the {W,;}, {Z;} and {ZJI} Therefore, let
= b, and HZJ — _— by, conditioning on the W,,;’s, it follows that using (A10) the
probabihty on the left-hand 51de of F(A8) is equal to

Eyy P* <;ﬁ e [6urs) >9:W> > Ey (\ﬂgm(] |bJ>xW>
()
> Bt Z T{len! > <)
{ Fo- 1))
- (Pw(|fn1|>€)
I{\/Iﬁb’j} > z}> (A11)
o P(Y > cE)Y]) > w, (A12)

the Paley-Zygmund argument, where Y > 0 and 0 < ¢ < 1. Using (A12) with cE[Y] =e and Y = [,1]
on the right-hand side of (A11), we have

P (6l > 9) (2{ S0 > 1)

(1= /Bl ) €l (f 1. =
- ( E €17 ) ({70-2}) (813)

Combining (A8), (A11l) and (A13), this implies that

(1= /Bl&nl)’ )\ 2 f 1 0 e 2
< E[[&n1]?] )I{\/ﬁIIZJ Z\% > 6}

4e
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and by (A9), respect to (A14) we have that

(1 — &/E[&m)* (B [|m])? 1 .2
( E [|€n11?] )I{ o I Fp > 5}
< ii (A15)
By the property E*[Zg] = P*(B), in (A15) it follows
(1= /Ellnl)* E16al)) 2p- [ o .
( E [|€n1]?] ) F (1<j<n ‘ o 5)
< 4e. (A16)

By B4, and the fact that the convergence in quadratic mean of |£,1] to b > 0 implies the convergence
in mean to this constant, then the first term of (A16) converges to a positive constant. Respect to
the second term,

. / T
lim leP’*( max — f > ) =0.
00 Fr 5
. T _ ’ T\/Nn .
That is, P*| max ’ > Z) = o(x™?), as x — oo. Now, let © = i, since
<]<n Fr £ g

P*(lglag Z; — > x) has a superior tail of order o(z~2), then all its moments of order
SIsn
’ T
0 <r < 2respect to max ||Z; — Z; exist; i.e., E* | max (|Z; < oo, for 0 <r <2 In
1<j<n IFe 1<j<n TlFe

particular, we have [E* { max ||Z; — ZJ/»

1<j<n

- } < 00, and by (A9) it follows that
r

E* [Hzl s

FJ < 00. (A17)

Finally, by the convexity of the norm || - || 7. together with E[Z;] = 0, respect to (A17) we have

E* [IZ1]l 7] =P (Ifa(Y1) = B(fa)ll ) < oo,
applying the Jensen’s inequality. 0

Lemma 11. Let £ = {|&;] : 7 = 1,2,...,n,n = 1,2,...} be a triangular array of non-negative and
exchangeable random variables, defined on the probability space (W, D,Pyw). If & satisfies conditions
B2 and B3, this implies that the sequence {|&n1|}nen is uniformly square-integrable; that is,

lim limsup E(|&u1 [*Z{|¢n| > t}) = 0. (A18)
=00 p 0o

Furthermore, B2 and B3 also imply that

E [ max M} — 0. (A19)

1<jsn N

Proof. Let
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oo

E(|§n1|2 H{|§n1| > t}) = PW(‘Snl‘Q H{‘§n1| > t} > x)dfv

8

Py (|€n1] - I{[En1| > t} > Va)da

oo

— — — 5—

t

]P)W(|£n1| : H{|§n1| > t} > u)2udu

oo

+

—~

Since
(J€n1| > 1) si0<u<t,

P
PW(|€n1|I{|£TL1| > t} > U) = {PZ(K l>u) stiu>t

(A20)

where Py (1§01 Z{|6n1| > t} > u) = Pw (|n1]| >tV u), such that ¢ V u denotes the maximum between

t and u. Respect to (A20) we obtain

(oo}

E(6m PT{|em| > 1)) = / Poy (|| > 1)2udu + / Poy ([ | > w)2udu

= " Pw(|&u| > 1)

Lo / ur/ P (6] > ) v/ B (] = w)d.
t

52

By B3, let £ > 0. We can choose T large enough so that t?Py (|| > t) < T

t > T that is,

9
P (€01 > 1) < —.
EDES=

Furthermore, for u > t,

3
Pw(lém| 2u) < iz = VPw(Em[Zu) <o

Hence, in (A21) it follows that

g2 o
Bl PZgnl 2 8) < e [ VPl = wia
t
2
g
< Z+5||€n1||2,17

and by virtue of B2, since ¢ is arbitrary, the expression (A18) it is satisfied.

To prove (A19), let £ > 0. From (A18) we can choose t large enough so that

limsup 2Py (o] > 1) < limsupE(&ui PZ{|6u| > 1)) < €2,
n— o0

n— oo
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(A21)

for each n € N when



for t > . Then

€ (oo}
E Lrg]agnléml} = /0 Pw(lrgjagnfnjl >t>dt+ / Pw(lrgjagnfnjl >t>dt
oo
< g+/ Py (|€1| > t)t2dt
€

1
< 6+52g=26,

and since € is arbitrary, this finishes the proof of the lemma. O
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