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ABSTRACT 

This letter presents an overview on some remarkable basics on kernels as well as the formulation of a clustering approach based 

on least-squares support vector machines. Specifically, the method known as kernel spectral clustering (KSC) is of interest. We 

explore the links between KSC and a weighted version of kernel principal component analysis (WKPCA). Also, we study the 

solution of the KSC problem by means of a primal-dual scheme. All mathematical developments are carried out following an 

entirely matrix formulation. As a result, in addition to the elegant KSC formulation, important insights and hints about the use 

and design of kernel-based approaches for clustering are provided. 
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RESUMEN 

En esta investigación se presenta una descripción general de algunos conceptos básicos e importantes sobre kernels, así como la 

formulación de un enfoque de agrupación basado en máquinas de vectores de soporte de mínimos cuadrados. Específicamente, 

el método conocido como kernel espectral clustering (KSC) es de interés. Exploramos los enlaces entre KSC y una versión 

ponderada del análisis de componentes principales del núcleo (WKPCA). Además, estudiamos la solución del problema KSC 

por medio de un esquema primal-dual. Todos los desarrollos matemáticos se llevan a cabo siguiendo una formulación 

completamente matricial. Como resultado, además de una formulación de KSC, se proporcionan ideas y sugerencias importantes 

sobre el uso y el diseño de enfoques basados en el kernels para clustering.  

 

PALABRAS CLAVE: Support vector machine SVM, Clustering, Kernel spectral clustering KSC, kernel principal 

component analysis WKPC. 

 

1. INTRODUCTION 

 
Clustering is a typical task in many real-life scenarios, and its automated approaches have therefore 

become a widely-used, powerful tool [9]. Broadly speaking, clustering can be defined as the 

procedure aiming at splitting a set of objects into subsets -known as clusters. More technically, 

clustering approaches lie on the field of unsupervised learning wherein the exploratory analysis of 

data is carried with no prior knowledge nor any supervised information 

Among the remarkable applications where clustering has taken place, it is worth mentioning: Medical 

applications such as cardiac arrhythmia identification from electrocardiographic signals through 

heartbeat clustering [23, 20, 3, 21], and sleep stages classification via clustering of 

electroencephalogram derived patterns [22], and patient stratification [10]. Transportation 

optimization by grouping areas [7]. Moving objects using dynamic data clustering [31, 15, 19]. And 

                                                        
1 ∗ yasmany.fernandez@upec.edu.ec 

 

http://www.sdas-group.com/
mailto:∗%20yasmany.fernandez@upec.edu.ec


 115 

very recently, clustering is one of the benchmark methods for Big Data applications, especially, for 

those involving representation and pre-processing stages for high-dimensional data [14, 13, 1]. 

In spite of being widely used, highly recommended for exploratory analysis problems, and greatly 

versatile [9], clustering algorithms -even the most recent ones- still lack a definite solution to local 

minima convergence issue. In the pursue of such a solution, the density-based [5], deep learning [8], 

and spectral [29] approaches have shown to be the most suitable ones. Indeed, some works have 

studied how to make a decision on what is the optimal clustering alternative for a certain application 

[17]. 

In this article, we focus on spectral clustering (SC), which estimates the cluster indicators from the 

spectrum of the graph Laplacian related to a weighting matrix, also called kernel matrix. Literature 
reports that SC is able to dealing with complex-structure data (holding highly non-linearly separable 

classes) [18]. Nonetheless, when the calculation of the eigenvectors is prohibitive due to complexity 

or computational cost issues, there are alternatives that solve the same graph-based clustering 

formulation with no spectral calculations. For instance, by means of either a heuristic search [3] or 

using quadratic forms formulations [11].  

This letter is intended to overview some concepts on kernels to devise a clustering approach followed 

from support vector machines (SVM) within a least-squares framework. Particularly, we outline the 

so-named kernel spectral clustering (KSC) proposed in [2], which is based on a weighted kernel 

principal component analysis (WKPCA) interpretation of spectral clustering with primal-dual least 

squares SVM formulations. The contribution of this work is that not only a fully matrix, and elegant 

formulation for KSC is provided but also some previous works have been extended [28] to provide 
more insights and hints to study and use kernel-based approaches for clustering. 

The scope of this manuscript encompasses the description of the kernel spectral clustering method in 

Section 3. To do so, it starts by explaining some definitions and basics about kernels in Section 2. 

Some experimental results are presented in Section 4. Finally, some concluding remarks are drawn in 

Section 5. 

 

2. KERNELS FOR CLUSTERING 

 

This section gathers new perspective to define the slippery concept of “kernel” within the context of 

data exploratory analysis. From a geometric point of view, the term kernel can be understood as a 

function quantifying somehow the similarity among given input elements -which relies on graph 

theory. 

Let us define the data matrix to be clustered as ( ) ( )(1) ( )

1, , , , N D D

N

T
X R x x x x =  =  , where 

D

ix R  is the i -th data sample, 
( ) Nx R  is the -th variable, {1, , }i N  , and {1, , }D  . Also, 

let us consider a function to map from the D -dimensional space to that hD  dimensional one is in the form 

( )  , such that: 

 
 ( ) : R

( )

hdd

i ix x

R



→

→


              (2.1) 

Then, the matrix ( )1( ) , , ( ) , h
T

T T N D

Nx x R  
 =    becomes a high dimensional representation 

of the original data X . 
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Figure 1: High dimensional mapping 

That said, we may define kernels as functions allowing for mapping from a D -dimensional input 

space representing a data set to a significantly higher dimension hD  space, where 𝐷ℎ ⋙𝐷. In terms 

of clustering, the advantage of mapping the original data space onto a higher one lies in the fact that 
the latter space may provide more cluster separability as seen in Figure 2. Furthermore, it must be 

taken into account that the mapping is done before carrying out any clustering process. Then, the 

success of the clustering task can be partly attributed to the kernel-matrix-building function when 

grouping algorithms are directly associated with the chosen kernel. 

 

 
Figure 2: Feature space to high dimension. 

 

Some kernels with special structure aimed to attend particular interests have been proposed. For 

instance, in [26], a structural cluster kernel (SCK) is introduced incorporating similarities induced by 
a structural clustering algorithm to improve graph kernels recommended by literature. Also, Mercer 

kernels have been employed for unsupervised partitioning with automatic estimation of the inherent 

number of groups [24], as well as for solving multi-cluster problems [4].  

This section describes some basics and fundamental aspects regarding kernels, in particular, for 

clustering purposes. The remaining of this section is as follows: Section 2.1. presents in general terms 

the definition of kernel and some properties and related concepts. Finally, in Section 2.2., the most 

common kernel functions coming from positive definite matrix are described. 

 

2.1. Kernel function 

 

In terms of human learning theory [16], one of the fundamental problems is the discrimination among 
elements or objects. Take the following instance: We have a set of objects formed by two different 

classes; then, when a new object appears the task is to determine to which class such an object 

belongs. This is usually done by taking into account the object’s properties as well as similarities and 

differences with regards to the two previously known classes. According to the above, and regarding 

kernel theory, we need to create or choose a similarity or affinity measure to compare the data. 

Kernels considered in this work are positive semi-definite, and then their corresponding Gram Matrix 

(or kernel matrix) is to be positive semi-definite as well. In other words, we can define a kernel 

function in the form 

  

 

 
( , ) : K

, ( , )

d d

i j i j

KK

x x x x



→

 →   
 (2.2) 

where K C=  or R . Note that in this case we have assumed elements ix  to be real and D -

dimensional. Then, if we have a total of N  elements or data points, a N N  matrix K  with entries 

( , )ij i jk x x=  is called Gram matrix or kernel matrix as well. Therefore, the kernel matrix must be a 

positive semi-definite matrix, i.e., a N N  complex matrix K  satisfying   
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1 1

0
N N

i j ij

i j

c c k
= =

  (2.3) 

 

for all ic C  is called positive definite, being ic  the complex conjugate of ic . Similarly, a real 

symmetric N N  matrix K  satisfying 2.3 for all ic   is also called positive definite [25] Note that 

a symmetric matrix is positive if and only if all its eigenvalues are non-negative. In the literature, a 

number of different terms are used for positive definite kernels, such as reproducing kernel, Mercer 

kernel, admissible kernel, support vector kernel, non-negative definite kernel and covariance function 
[25]. 

An interesting and strongly useful property is the so-called kernel trick. This property gains 

importance in kernel theory, since it permits to replace a positive definite kernel with another kernel 

that is finite and approximately positive definite. For instance, from a given algorithm formulated in 

terms of a positive definite kernel ( , )   , one can construct an alternative algorithm by replacing it by 

another positive semi-definite kernel 𝜅̃(∙,∙) [25], in such a manner that 
T K = . Then, in this case, 

kernel 
T  has been estimated as K . The fact to use K  as an alternative estimation of 

T  is 

known as kernel trick. 

 

2.2. Types of kernel functions 

 

Radial basis function (RBF) kernels are those that can be written in terms of similarity or dissimilarity 

measure, in the form: 

 ( , ) (d( , )) i j i jx x f x x = , (2.4) 

 

where d( , )   is a measure on the domain of X , in this case 
dR , so: 

 
 d( , ) : R

, d( , )

D D

i j i j

R

x

R

x x x

+ →

→

 
 (2.5) 

and ( )f   is a function defined on R +
. Usually, such measure arises from the inner product; 

d( , ) ,i j i j i j i jx x x x x x x x= − = − −  

In Table 1, some conventional kernels are mentioned -all of them are defined over the domain 𝑅𝐷. 

 

Kernel name Definition 

Linear  ,i jx x  

Polynomial  ,
D

i jx x  

Rational quadratic 

2

2
1 ,

i j

i j

x x
R

x x




+
−

− 
− +

 

Exponential 
2

exp ,
2

i jx x
R



+
 −
 − 
 
 

 

Gaussian 

2

2
exp ,

2

i jx x
R



+

 −
 − 
 
 

 

Table 1: Some conventional kernel functions. 
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3. LEAST-SQUARES SUPPORT-VECTOR-MACHINE-BASED FORMULATION FOR 

KERNEL SPECTRAL CLUSTERING 

 

This section outlines the formulation and solution of a clustering problem based on least-squares 

SVMs, so-named kernel spectral clustering (KSC). KSC -just as any other clustering approach- is 

aiming to split the input data matrix X into K disjoint subsets- In the following, the clustering model 

is described. Let 
( )l Ne R be the l-th projection vector, which is assumed in the following latent 

variable form: 

                                    
( ) ( ) 1 ,l l

l Ne w b=  +              (3.1) 

Where 
( ) hDlw R is the l-th weighting vector, 𝑏𝑙 is a bias term, n is the number of considered latent 

variables, notation 1𝑁 stands for a N dimensional all-ones vector, and the matrix Φ is a high dimensional 

representation of the input data. Therefore, 𝑒𝑙 represents the latent variables from a set of 𝑛𝑒 binary cluster 

indicators obtained with 𝑠𝑖𝑔𝑛(𝑒)(𝑙) which are to be further encoded to obtain the K resultant groups. 

Grounded on the least-squares SVM formulation of equation (3.1), the following optimization 

problem can be stated: 

( ) ( ) ( )

( )T ( ) ( )T ( )

, ,
1 1

  
 

1 1

2 2
 

e e

l l l

n n
l l l l

le w b
l l

max e Ve w w
N


= =

−             (3.2a) 

( ) ( ) 1 , Tl l

l Ne w b=  +                 (3.2b) 

where l R +  is the l-th regularization parameter and 
N NV R   is a diagonal matrix representing the 

weight of projections. 

Thinking of further analysis, we express the above primal formulation in matrix terms, as follows: 

 ,  ,

1 1
max ( ) ( ) 

2 2
E W b

T Ttr E VE tr W W
N

 −              (3.3a) 

   1  N

TE W b=  +                  (3.3b) 

where ( )1, ,
en

T

b b b=  , en
b R , ( )1( , , )

enDiag   =  , ( )( )(1) , , en
W w w= , h eD n

W R


 and 

( )( )(1) , , , . e en N n
E e e E R


=   Notations ( ), ( )Diag tr  and  denote the diagonal matrix formed by 

its argument vector, the trace and the Kronecker product, respectively. By minimizing the previous cost 

function, the goals of minimizing the weighting variance of E  and maximizing the variance of W are 

reached simultaneously. Let E the weighting covariance matrix of E and W the covariance matrix of W .  

Since matrix V  is diagonal, we have that 
1/2 1/2(( ) ) ( )E

Ttr V E V E tr=  . In other words, E  is the 

covariance matrix of weighted projections, i.e., the projections scaled by square root of matrix V . As well, 

( ) ( ) T

Wtr W W tr=  . Then, KSC can be seen as a Kernel WPCA approach. 

 

3.1. Solving the KSC problem 

 

To solve the KSC problem, we form the corresponding Lagrangian of problem from equation (3.2) as 

follows: 

(       
1 1

( , , , ) ( ) ( ) ( 1 )),
2 2

N

T T T TE W A tr E VE tr W W tr A E W b
N

 =  − − −  − L            (3.4) 

where matrix eN n
A R


  holds the Lagrange multiplier vectors ( )( )(1)  , , en

A  = , and 
( )l NR  is 

the l-th vector of Lagrange multipliers. 

Solving the partial derivatives on ( , ,  , )E W AL , to determine the Karush-Kuhn-Tucker conditions, we 

obtain: 
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1 1 , 0 E N V A
E

− −
=  = 



L
 

 0 ,
 

TW A
W


=  =



L
 

0,  
 

,E W
A


=  =



L
 

1 0.
 

0 N

Tb
b


=  =



L
 

Therefore, by eliminating the primal variables from initial problem (3.2) and assuming a kernel trick such that 

 K =•
, being 

N NK R  , a given kernel matrix (just as any of those explained in section 2) the 

following eigenvector-based dual solution is obtained: 
1( (1 )( ) ,  )N N

TA AV I b K K− = +                   (3.5) 

Where ( )Diag  = , 
N NR  , 

NR  is the vector of eigenvalues with l R + . 

Also, taking into account that the kernel matrix represents the similarity matrix of a graph with K connected 

components as well as 
1 V D−=  where 

N ND R   is the degree matrix defined as ( 1 )ND Diag K= ; then 

the  1K −  eigenvectors contained in A , associated to the largest eigenvalues, are piecewise constant and 

become indicators of the corresponding connected parts of the graph. Therefore, value en  is fixed to be 

1K − [2]. 

With the aim of achieving a dual formulation, but satisfying the condition 1 0T

Nb =  by centering vector b  

(i.e. with zero mean), the bias term should be chosen in the form: 
( )1/ (1  1  )   1 l

l N N

T

N

Tb V V K = −                   (3.6) 

Thus, the solution of problem of equation (3..3) is reduced to the following eigenvector-related problem: 

 A VHKA =                     (3.7) 

where matrix 
N NH R   is the centering matrix that is defined as 

1
1  

  
1

1 1

T

TN N N

N N

H I V
V

= −  

where NI denotes a N -dimensional identity matrix and, [ ], N N

ijK K K R =  , being

( , ), , {1, , }ij i jK x x i j N=   . As a result, the set of projections can be calculated as follows: 

  1 .N

TE KA b= +                     (3.8) 

Once projections are calculated, we proceed to carry out the cluster assignment by following an 

encoding procedure applied on projections. Because each cluster is represented by a single point in 

the 1K − -dimensional eigenspace, such that those single points are always in different orthants due 

also to the KKT conditions, we can encode the eigenvectors considering that two points are in the 

same cluster if they are in the same orthant in the corresponding eigenspace [2]. Then, a code book 

can be obtained from the rows of the matrix containing the 1K − binarized leading eigenvectors in 

the columns, by using 
( )sign( )le . Then, matrix sgn( )E E=  is the code book being each row a 

codeword. 

 

3.2. Out-of-sample extension 

 

KSC can be extended to out-of-samples analysis without re-clustering the whole data to determine the 

assignment cluster membership for new testing data [2]. In particular, defining en
z R  as the 
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projection vector of a testing data point testx , and by taking into consideration the training clustering 

model, the testing projections can be computed as: 

test  Tz A K b= +                  (3.9) 

where test
en

K R  is the kernel vector such that 

1test test test[ , , ] ,
N

K K K=  •
 

where test test( , )
i iK x x= . Once, the test projection vector z  is computed, a decoding stage is carried 

out that consists of comparing the binarized projections with respect to the codewords in the code 

book 𝐸 and assigning cluster membership based on the minimal Hamming distance [2]. 

 
3.3. KSC algorithm 

 

Following the pseudo-code (Algorithm 1) to perform KSC is shown 

 

Algorithm 1 Kernel Spectral Clustering: train test[ , ] KSC( , ( , ), )q q X K=    

1: Input:  , , ( , )K X     

2: Form the kernel matrix K  such that ( , )ij i jk y x=  

3: Determine E  through (3.8) 

4: Form the training codebook by binarizing  𝐸 = 𝑠𝑔𝑛(𝐸)  

5: Assign the output training labels trainq according to similar codewords 

6: Compute the training codewords for testing 

7: Assign the output testing labels testq according to the minimal Hamming distance when 

comparing with training codewords 

8: Output: train test,q q   

 

 

4. EXPERIMENTAL RESULTS 

 

Based upon outcomes reported in previous works [18], this section gathers some experimental results 

to highlight the benefits of the here-studied KSC. To do so, conventional methods are used for com- 

parison  purposes,  namely:   kernel  k-means  (KKM)  [33], min  cuts (Min-cuts) [27] and  multi-

cluster spectral  clustering  (MCSC)  [31].    

They are all performed over the same conditions: kernel  matrix and  number  of clusters.  The  

segmentation performance  is quantified by a supervised  index noted as Probabilistic  Rand  Index  

(PR)  explained  in [28],  such  that P R  ∈  [0, 1], being  1 when  regions  are properly  segmented. 

Images are drawn from the free access Berkeley Segmentation Data Set [12].  

To represent each image as a data matrix, we characterize the images by color spaces (RGB, YCbCr, 

LAbB, LUV) and the 𝑥𝑦 position of each pixel.  To run the experiment, we resize the images at 20% 

of the original size due to memory usage restrictions.  All the methods are performed with a given 

number of clusters K manually set as shown in Fig. 3, and using the scaled exponential similarity 

matrix as described in [33], setting the number of neighbors to be 9. 

Also, another real databases collection is considered that is taken from the UCI repository [10]. For 

quantitative evaluation of compared clustering methods in terms of performance and stability, the 

estimated mean value of considered measures are shown in Table 2, which are computed after 
running algorithms 50 times. Methods are performed by setting the number of groups as the original 

number of classes. Again, a scaled similarity matrix is used with the number of neighbors equals to 

15. We use two well-known clustering measures: Fisher's criterion (J) and Silhouette (S). 
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Figure 3: Clustering performance on image segmentation for assessing KSC and reference methods 

on complex-structure data. 

 

 Method 

Data set Measure Min-cuts MCSC KKM KSC 

Iris 
J 2.8 ± 0.15 2.01 ± 0.1 2.7 ± 0.12  2.9 ± 0.15 

S 0.7 ± 0.009 0.45 ± 0.009 0.55 ± 0.01 0.65 ± 0.011 

Biomed 
J 1.5 ± 0.09 0.95 ± 0.1 1.1 ± 0.11  1.1 ± 0.3 

S 0.60 ± 0.01 0.25 ± 0.011 0.45 ± 0.014 0.54 ± 0.09 

Auto mpg 
J 0.69 ± 0.15 0.62 ± 0.13 1.04 ± 0.22  0.80 ± 0.11 

S 0.35 ±0.009 0.30 ± 0.009 0.35 ± 0.009 0.42 ± 0.009 

Breast 
J 0.85 ± 0.1 0.85 ± 0.12 0.85 ± 0.14  0.85 ± 0.23 

S 0.75 ± 0.0091 0.61 ± 0.01 0.78 ± 0.014 0.78 ± 0.011 

Glass 
J 0.54 ± 0.11 0.45 ± 0.12 0.50 ± 0.18  0.53 ± 0.22 

S 0.61 ± 0.011 0.41 ± 0.011 0.53 ± 0.012 0.56 ± 0.023 

Diabetes 
J 0.54 ± 0.091 0.45 ± 0.1 0.50 ± 0.11  0.54 ± 0.51 

S 0.61 ± 0.0091 0.42 ± 0.0092 0.55 ± 0.011 0.59 ± 0.089 

Heart 
J 0.11 ± 0.26 0.14 ± 0.26 0.14 ± 0.3 0.15 ± 0.54 

S 0.32 ± 0.012 0.37 ± 0.012 0.39 ± 0.017 0.32 ± 0.056 

 

Table 2: Overall performance for clustering methods over real databases by comparing KSC with 

conventional methods. 

 

As can be appreciated from the results for both real datasets and images, KSC overcomes 

conventional clustering methods. This is due to the fact that KSC exploits the use of kernels to 

harness the local structure information. As can be noticed, it works well on image segmentation, 

which means that complex data can be rightly modeled by KSC. In addition, KSC is also able to deal 
with real databases where some compactness is guaranteed. Then, KSC is a more flexible and 

versatile method. 

 

5. FINAL REMARKS 

 

As has been widely reported by literature, the kernel spectral clustering (KSC) method has proved to 

be a powerful tool for solving pattern recognition problems when labeling is unavailable and clusters 

are highly non-linearly separable. The suitability of KSC lies in its formulation.   
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In this work, we presented the formulation (KSC) through elegant and fully matrix statements, which 

enable its practical use and interpretation, specially thinking of further computational applications. 

Also, some key aspects for a deep understanding of KSC is provided. 
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