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ABSTRACT

A Production Inventory model is an inventory control model that determines the amount of product to be produced on a
single facility so as to meet a deterministic demand over an infinite planning horizon. In all inventory models a general
assumption is that products generated have indefinitely long lives. In general, almost all items deteriorate over time. In
production inventory model, the demand rate is constant and it does not change over the period. But in real life, the demand
rate is fluctuating over the period. Atthe end of the particular period, the demand rate will get changed. So, the continuous
compound demand rate is analyzed in the model 1 and integrated continuous compound demand with growth of demand is
introduced in the model 2. To our knowledge, no researchers have considered both time dependent demands in a single

model. The rate of Growth in the production period is Y (1+ I)n and in the consumption period is Y (1— I)n . This

research considers inventory systems for production inventory models where the objective is to find the optimal cycle time,
which minimize the total cost and optimal amount of shortage if it is allowed. The relevant model is built, solved and
closed formulas are obtained. Necessary and sufficient conditions are derived. An illustrative example is provided and
numerically verified. The validation of result in this model was coded in Microsoft Visual Basic 6.0

KEYWORDS: Economic Production Quantity (EPQ), Deteriorative items, Cycle time, Optimality, Integration, Growth of
Demand, Continuous compound Demand (CCD) and Production.
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RESUMEN

Un modelo de inventario de produccién es uno de control que determina la cantidad de productos a ser producida por una
facilidad simple para alcanzar una demanda deterministica en un horizonte infinito de planeamiento. En todos los modelos
de inventario una general asuncién es que los productos generados tienen una vida larga e indefinida. En general, casi
todos los items se deterioran con el tiempo. En los modelos de inventario de produccion, la tasa de demanda es constante
y no cambia en el periodo. Pero en la vida real, la tasa de demanda fluctia en el periodo. Al final del particular periodo,
la tasa de demanda cambiara. Asi que el componente continuo de la tasa de demanda es analizada en el modelo 1y la
demanda integrada continua compuesta con crecimiento se introduce en el modelo 2. A nuestro conocimiento, ningin
investigador ha considerado al mismo tiempo demandas dependientes del tiempo en un mismo modelo. La tasa de

\n \N
crecimiento en el periodo de produccion es Y (1 + I) y en el de consumo Y (1 - I) . Esta investigacion considera

sistemas de inventario para modelos de inventarios de produccién donde el objetivo es hallar el éptimo del ciclo de tiempo,
que minimice el costo total y la cantidad optimal de las carencias, si esta es aceptada. El modelo relevante se construyo,
resolvié y férmulas analiticas son obtenidas. Se derivan condiciones necesariasy suficientes. Un ejemplo ilustrativo se
presenta y se verifica numéricamente. La validacion del modelo resultante se codificd en Microsoft Visual Basic 6.0

PALABRAS CLAVE: Cantidad Econémica de Produccién (EPQ), items Deteriorativos, Ciclo de tiempo, Optimalidad,
Integracion, Crecimiento de la Demanda, Demanda continua compuesta (CCD) y Produccién.

1. INTRODUCTION

The fundamental goals and strategies of most of the manufacturing firms is to satisfy the customer’s demand
and to attain minimum cost. The company has to use their resources effectively to attain these goals. Several
decades ago the first mathematical model was introduced to assist companies in minimizing the total
inventory costs which balances cost of inventory and cost of setup per set with the derivation of optimal order
quantity. The EOQ inventory model is in existence based on its easiness. In the manufacturing sector, when
items are produced internally instead of being obtained from an outside supplier, the economic production
quantity (EPQ) model is often employed to determine the optimal production lot size that minimizes overall
production/inventory costs. The production inventory model considers the supreme case where the value of
inventory items are unaffected by time and replenishment is done instantaneously. But the supreme case is not
favorable for the real life situations. Inventories are often replenished periodically at a certain production rate
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which is seldom infinite. In the past decades, deteriorating inventory problems were typically approached by
developing mathematical models that considered practical factors in a real world situation. Demand is the
major factor in the inventory management. Therefore, decisions of inventory are to be made because of the
present and future demands. As demand plays a key role in modeling of deteriorating inventory, researchers
have recognized and studied the variations of demand from the viewpoint of real life situations. Demand may
be constant, time-varying, stock-dependent and price-dependent, etc. Inventory modelers have so far
considered only three types of time-dependent demands, linear, exponential and quadratic demand. Linear
time-dependence of demand implies a uniform change in the demand rate of the product per unit time. This is
rarely seen to occur in the real market. An exponentially time-varying demand also seems to be unrealistic
because of exponential rate of changes is very high and it is uncertain whether the market demand of any
product may undergo such a high rate of changes as exponential. In quadratic time-dependence of demand, it
may represent all types of time-dependence depending on the signs of the parameters of the time-quadratic
demand function (and perhaps more realistic). An alternative approach is considered to the rate of growth of
demand. Growth of demand refers to an increase in demand over an extended period. Growth can best be
described as a process of transformation. Deteriorating items are common in our daily life; however,
academia has not reached a consensus on the definition of the deteriorating items. Ghare and Schrader (1963)
developed a inventory model in which the decrease in inventory level is based upon not only on demand but
also by deterioration. Heng, Labban and Linn (1991) developed production inventory model with finite
production rate and the effect of decay for which the solution of optimal lot size and order level is obtained
from the algorithm. Shib Sankar Sana (2004) considered production inventory model for deteriorating item
with a linear time varying demand and finite production rate in which shortages are allowed. Alfares et al.
[2005] introduced a solution algorithm for incorporating quality and maintenance aspects into a production
inventory system for deteriorating items. Closed-form solutions include the quality considerations. Chiu et al.
[2007] developed an EPQ model with imperfect production quality, imperfect inspection and rework.
Srivastava and Gupta (2007) developed an inventory model for deteriorative items with constant demand for
certain period and linear demand for the remaining period. Maity et al (2008) considered production
inventory model in fuzzy and the demand is inversely depending on the selling price and the selling price is
serviceable with stock dependent. The holding cost is fuzzy variables and the authors considered the optimal
control approach is considered to optimize the production. Mahata[2011] considered a realistic inventory
model with imprecise inventory cost components have been formulated for deteriorating items under trade
credit policy within the EPQ framework. It is assumed that the retailer maintains a powerful position and can
obtain full trade credit offered by supplier yet retailer just offers the partial trade credit to his/her customers
under which the replenishment rate is finite. Feng, Yan and Viswanathan [2011] proposed mathematical
models for general multi manufacturing and remanufacturing setup policies. Chung and Wee [2011]
considered short life-cycle deteriorating product remanufacturing in a green supply chain inventory control
system. Widyadanaetal. [2012] developed EPQ models for deteriorating items with preventive maintenance,
random machine breakdown and immediate corrective action. Corrective and preventive maintenance times
are assumed to be stochastic and the unfulfilled demands are lost sales. Widyadana etal. [2012] developed an
economic production quantity model for deteriorating items with rework. In one cycle, production facility
can produce items in m production setups and one rework setup, (m.1) policy. Sivashankari and Panayappan
(2015) considered production inventory models for deteriorating items with growth of demand and allowed
shortages. The rate of growth in the production period is D(1 + i)" and in the consumption period is D(1 - i)".
Prasenjit Manna (2016) considered inventory model for deteriorative items with ramp type demand function.
The unit of production cost is inversely proportional to the demand rate and shortages are not permitted.
Tripathi, Sarla Pareek and Manjit Kaur (2017) considered a purchasing inventory model for time dependent
exponential deterioration items with time dependent exponential demand and shortages are permitted. And
also, unit production cost and demand rate are considered as proportional to each other. Sumit Saha and
Nabendu Sen (2017) considered an inventory model for deteriorating items with negative exponential demand
and shortages are permitted with partial back logging. In this model, three types of probabilistic deterioration
function is studied to determine decision variables. Pervin and Roy (2018) developed an inventory model for
deteriorative items with integrated vendor buyer inventory model along with time-dependent demand to
attract more customers and time dependent holding cost. Shortages are permitted and partial backordering is
followed. Anima Bag and Tripathy P.K. (2019) developed an inventory model for deteriorative items with
time and selling price induced quadratic demand and also developed the production period consisting of many
sub periods with different production rates. Tahirov et al (2019) developed a production inventory models for
four-level closed-loop supply chain with remanufacturing. Customer demand is met from either newly
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manufactured item, remanufacturing used items collected from customer for recovery or from both. ~ Sunil
Tiwaria, Leopoldo Eduardo Cardenas, Barrdnb Ali, AkbarShaikh and Mark Gohad (2018) developed
inventory model for deteriorating items to determined theoretical results with shortages and partial delay in
payment. Shaikh, Cardenas-Barrén and Tiwari, S. (2019) considered a two-warehouse inventory model for
non-instantaneous deteriorating items with interval-valued inventory costs and stock-dependent demand under
inflationary conditions. The proposed inventory model permits shortages, and the backlogging rate is variable
and dependent on the waiting time for the next order, and inventory parameters are interval-valued. The main
aim of this research is to obtain the retailer's optimal replenishment policy that minimizes the present worth of
total cost per unit time. In this paper, the continuous compound demand is analyzed in the model 1 and
growth of demand with continuous compound demand rate is considered in model 2 and shortages are not

permitted. The rate of Growth in the production period is Y (L-+1)" and in the consumption period is

Y (1— i)n . This research considers inventory systems for production inventory models where the objective is

to find the optimal cycle time, which minimize the total cost and optimal amount of shortage if it is allowed.
This paper is organized as follows. Section 2 is concerned with assumptions and notations, Section 3 presents
mathematical model for finding the optimal solutions and numerical example. Section 4, consider
comparative study between constant demand, continuous compound demand and Continuous compound
demand with growth of demand. Finally, the paper summarizes and concludes in section 5.

2. ASSUMPTIONS AND NOTATIONS
2.1, Assumptions

The following assumptions are used to formulate the problem:

(1) Initial inventory level is zero and planning horizon is infinite, (2) The demand rate is continuous
compound demand in model 1 and CCD with Growth of Demand in Model 2., (3) Shortages are not allowed,
(4) Cost of carrying inventory per unit per unit time is known, (5) The lead time is known and constant, (6)
Items are produced and added to the inventory, (7) The production rate is always greater than or equal to the
sum of the demand rate, (8) The rate of deteriorative is 4 .

2.2. Notations.

The following notations are used in our analysis.

Q) X - Production rate in units per unit time, (2) Y - Ye R! Demand rate is continuous compound demand
in model 1 but in model 2, Y - Y (L1+1)"e™ is considered: (3) Q*-Optimal size of production run (decision
variable), (4) P. - Production cost per unit (5) # - Rate of perishable product, (6) H - Cost of carrying
inventory per unit per unit time, (7) SC - Cost of setup per set, (8) T- optimal cycle time (decision
variable), (9) T, - cost of production and the inventory is building up at a constant rate of X — Y units per unit

time, (10) I, - maximum inventory level at time T, , (11) R - Rate of increase in demand, (12) i —rate of
interest and (13) n —number of periods ( years)

Computational Algorithm:

Step 1: Assign values to the parameters with proper units

Step 2: To find the two variables T and Q in model 1 and model 2. Here two variables T1 and T has to be
calculated so the partial differential equation is used.

Step 3: The partial differential equation for optimality is as follows

2
M:O anch:zcr)>O

aT, oT,
ac) o g 2TCM g
oT OT?
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Step 4: The cubic equation is solved by using the following algorithm.

1. Let the cubic equation be ay® +by? +cy+d =0
2. Let us consider an example, Y —0.7660 y? +0.1345y —0.0058 =0
3. where A =1, B=-0.7660, C =0.1345 and D = -0.0058
4 The cubic equations have to be solved in several steps:
. 1/3C B?
5. Define a variable “ f, ”. Therefore, f, ==| — —— |=-0.06105
3l A A
. 1|2B® 9BC 27D
6. Define variable “(, “. Therefore, §, = —| —5-———+ =-0.00474
27| A A
2 3
. g f
7. Define variable “N,”. Therefore, h, = =+ — =-0.0000028
4 27
9, |
8. Define variable * i  therefore, | = {Tz - hz} =0.0029
1
9. Define variable j “, therefore, j =% =0.14266

10. Define variable “ k «, therefore, K = arc.Cosin {— Zg} =0.6147

|
11. Define variable “L”, therefore, L = -j = - 0.14266
12. Define variable “M”, therefore, M= C0S(k /3) =0.9791

13. Define variable “N”, therefore, N = J3 sin(k /3) =0.3524

14, Define variable “P”, therefore, P = 3_A =0.2553

Therefore, the roots of cubic equation are as follows:
y, =2jcos(k/3)—B/3A_0.5347;

Y, =L(M + N) + P =0.0654;
Y, =L(M —N)+P=0.1650.

From above, all roots are real.
Step 5: All datas are programmed and generated from visual basic 6.0 software.

3. MATHEMATICAL MODELS

3.1. Model: 1 Production inventory model for Deteriorative items with Continuous Compound Demand
(CCD)

The objective of the inventory models is to determine the optimal cycle time or the corresponding optimal
production quantity in order to minimize the total relevant cost. Consequently, the production time and the
maximum inventory level can easily be calculated. Figure 1 represents the economic production quantity
(EPQ) model with continuous compound demand. The inventory on-hand increases with the rate X — Y
during the production time, which is the production rate minus consumption rate. After that point, the
inventory level decreases with the consumption rate Y, until it becomes zero at the end of the cycle T, when
the production process is resumed again.

I (t) - Inventory lgvel
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o / T, T Tins()

Figure -1 Production Inventory Cycle
During the production time or stage, the inventory increases due to production but decreases due to demand
with the rate of deteriorative items. Thus, the inventory differential equation is
di(t
%+yl(t)=X—YeRt;0§t§ T (1)
During consumption period, no production is carried out but there is reduction in the inventory level due to
rate of deteriorative items and sales. Thus, the inventory differential equation is

di (1)

o THO=Ye" T sisT @
The differential equations boundary conditions are
10)=0, I(T))=1,, I(T)=0 3)

During the first cycle, the inventory level I(t), at time t is equal to
The solution of the differential equation (1),

I(t):%(l—e“t)+ R+ﬂ(e”‘—em) (%)

The solution of the differential equation (2),

_ Y (R+)T—ut _ o-RT
I(1) —R+y(e e ) (5)

Tofind T,and I,: From the equations (4), (5) and boundary conditions as per equation (3), the production
time T 1(1— e )wLL(e"‘Tl —eRh ): L(e(R“"T"‘t —e®t)

Y ou R+ u
Expanding the exponential functions and neglecting second and higher power of @ for small value of &, the

Y
Ti=y T 6)
From the equations (4), (5) and boundary conditions as per equation (3), the maximum inventory 1, is as
follows: |(T,)=1,= 1, =1(1—e‘*”1)+ Y
yZi

T (e"“Tl _eRTl) and I(M)=1,=1, :%‘u(e(mmﬁm _eRt)

On simplification,
IL=(X-Y)T, ()
Total Cost: Total cost comprises of setup cost, holding cost, production cost, and deteriorative cost

SC
(1) Setup cost = T (8)

(2) Production Cost = YP 9)
(3) Holding Cost: Holding cost is applicable to both stages of the production cycle, as described by
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T

T _ T
HC = "_'lj:“.l(t)dt+_|.l(t)dt]_ l-_ll_cl_([{z(l—e‘/‘t)+Y(e'M _eRt)}dH_J'Y

o T R+ u T1R+,u

(e(R+;4)T—;/t _eRt )dt]

X AT AT, RT,
- — T, +e71 =1)- Re™ "+ 8™ —R-p)| =
= He i (!‘ 1 ) R,u(R+y)( 12 !‘) = I—_||_C|:X2(/1T1 +eim _1)_ PR (Re—;1T1+(R+‘u)(eRT )~ Re(RewT=aT; )}
T (ReRT+#eRT 7Re(R+y)Tpr17ﬂeRT1) #
Ru(R+ )
= HC X —uT Y RT —uT, (R+)T =T,
—| =T+ =1)———|(R+ ) (" —1)+Re ™1 - 1 #
: Lz (e S R ET D )
- H
= el X (r vem 1) —— (R4 )™ —1)+Re (1 —e®7 ) (10)
T lu Ru(R+ p)

T T
(4) Cost of deteriorative = 1D {J‘ 1, (t)e Rt +'[I2(t)e‘mdt]
0

T

= “?C Dz(ml re M _1)-

m(ﬁz + )R 1)+ Re T (1 — e R+ ))} (1)

Theorem 1: The average system cost functions TC(T,) and TC(T) are strictly convex.
Proof: The optimality conditions can be easily shown that TC(T,) and TC(T) are convex function in T,

and T. Hence, an optimum cycle time T, and T can be calculated from
2

[TC(T)]> Oand

2
1

(i) a%[TCQ)]:O and aa

2

y d ~ )
(ii) E[chr)]_o nd [fcm]>o

The total cost function comprises of setup cost, holding cost, production cost and perishable cost. Therefore,
the total cost function is as follows:

_ R RT _1
TC(T) = i+ypc +(H, + 4D, Lz(ﬂTl e _Q_L (R+u)(e ) (12)
T H Ru(R+ )| + Re ™™ (1_e(R+p)T)

Partially differentiate the equation (12) with respect to T,
0 X —uT —uT, (R+u)T
—(TC =|—\u— ™) ——— - Rue ™[l =0
o (1Cm) Lz o= T o Rue )}}
% frem)
And TC(T)|>0
aT,?

1

YT
On simplification of the above equation, then the production time T, = 7 (13)
Therefore, TC(T,) is strictly convex.
Partially differentiate the equation (12) with respect to T, then

a ) %(ﬂl vt 1)

a—TU (M)]=—2%+(Hc + 4D, ) y R+ AT R - (Rt (e -1 0
Ru(R+ u)T?(+Re ™" (— (R+ u)Te®T —(l—e(R“‘)T ))
82
And al TC >0
nd also pep [ (I')]
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Therefore, the average system cost functions TC(T,) and TC(T) are strictly convex.

The reduced equation is as follows:
(T, +e™ —1)

/12 B Sc
Y R(R+)Te"" —(R+ )™ -1) " Hc + D
| Ru(R+p){+Re™™ (— (R + ) Te®T _ (1— g(ReT ))

To reduce the above equation in fourth order equation for the optimum solution of T ,the higher power of T >
and above are eliminated on some simplification

[ XT2 . Xul?  XuT)* +YT2 +Y,uT3 2YRT®  YR?T* +Yrem“

+
2 6 24 2 3 3 8 8 ___ Sc
. YT YRT®T, YaT?T, YRPTT, Yu°T°T, 2YRuT®T | YRuT T2 | He+uDc
24 2 2 3 3 3 4

Substitute the value of T, and on some simplification, the equation is reduced to cubic equation which is the
optimal solution for the cycle time T
[BXYR? =Y 4% + 3X YRy + X Y pu? ~8X 2Y 2R? +8X %Y 21? ~16 X %Y 2Ry + 6X YRy *
1o 24X7Sg

H¢ +uDc

(14)
+AX[Y 2+ 2X Y+ AX YR —3XY 2R —3XY 2uT® +12X 2Y (X —Y)

Taking demand Y overall common and take to RHS
[BX3R2 = Y342 +3X Ry + X 31> —8X YR? +8X *Y1s® —16 X *YRy + 6 X *RuJT *

3
+AX[Y 20+ 2X 2+ AX PR =3XYR —3XYu]T® +12X 2 (X —Y)T? = 24X S
Y(H¢ +4Dc)

Again, value of T is approximately equal both in forth and third order higher equation. Therefore, the fourth
order equation is reduced to third order equation
2
Y2+ 2X 2+ 4X 2R ~3XYR —3XYuJT® +3X (X —Y)T? = 2% S _
Y(H¢ +uDc)
Numerical Example 1, Let us consider the cost parameters
X =12000 units, Y = 11000 units, H. =15, P, = 120, S =500, # =0.01, R=0.01, D= 120
Optimum solution
Optimum Cycle time T = 0.2594, Optimum Quantity Q* = 2834.97; Production time T, = 0.2362,

Maximum Inventory |,= 236.25, Production cost = 1320000, Setup cost = 1940.05, Holding cost = 1726.19,
deteriorative items = 138.09, and Total cost = 1323804.34

Numerical example 2, If R = 0.1 (10%), then Optimum cycle time T= 0.2448, Optimum Quantity Q* =
2693.27; T, = 0.2244, maximum inventory |, = 224.43, Production cost = 1320000, setup cost = 2042.12,

holding cost = 1530.80, cost of deteriorative = 122.46, total cost = 1323695.39
Table 1 Variation of Rate of Deteriorating Items with inventory and total Cost

(15)

2] T Q T | Setup Cost | Holding Cost | Perishable Cost | Total Cost
1 1

0.01 | 0.2577 | 2834.97 | 0.2362 | 236.25 | 1940.05 1726.19 138.09 1323804.34
0.02 | 0.2486 | 2734.92 | 0.2279 | 227.91 | 2011.02 1637.08 261.93 1323910.03
0.03 | 0.2404 | 2644.70 | 0.2203 | 220.39 | 2079.62 1557.56 373.81 1324011.00
0.04 | 0.2330 | 2562.82 | 0.2135 | 213.56 | 2146.07 1486.07 475.54 1324107.69
0.05 | 0.2262 | 2488.05 | 0.2073 | 207.34 | 2210.56 1421.37 568.55 1324200.49
0.06 | 0.2199 | 2419.43 | 0.2016 | 201.62 | 2273.25 1362.48 653.99 1324289.72
0.07 | 0.2142 | 2356.16 | 0.1963 | 196.34 | 2334.30 1308.58 732.80 1324375.68
0.08 | 0.2088 | 2297.57 | 0.1914 | 191.46 | 2393.82 1259.02 805.77 1324458.62
0.09 | 0.2039 | 2243.12 | 0.1869 | 186.92 | 2451.93 1213.26 873.55 1324538.75
0.10 | 0.1993 | 2192.35 | 0.1826 | 182.69 | 2505.72 1170.86 936.69 1324616.27

Note : Production cost constant = 450,000
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From the table 1, a study in the rate of deteriorative items with optimum quantity, cycle time, production time
(T,) , maximum inventory ( 1,), setup cost, holding cost, deteriorative cost and total cost. There is a positive

relationship between the increase in the rate of deteriorative items with cost of setup, perishable cost and total
cost and there is negative relationship between increase in the rate of deteriorative with optimum quantity,
cycle time, production time, maximum inventory.

~ 1326000 ~ 1326000
7] i
2 1324000 & 1324000 “¢41711
© 1322000 O 1322000 I
T o v oo | B No@ oo
5 S 2o o | B © N
= o o o = o
Rate of Deteriorative Cycle Time
Figure 2 Relationship between Rate of Figure 3 Relationship between Cycle Time with
Deteriorative item with Total cost. Total cost

Sensitivity Analysis:
The total cost functions are the real solutions in which the model parameters are assumed to be static values.
It is reasonable to study the sensitivity i.e. the effect of making chances in the model parameters over a given
optimum solution. It is important to find the effects on different system performance measures, such as cost
function, inventory system, etc. For this purpose, sensitivity analysis of various system parameters for the
models of this research are required to observe whether the current solutions remain unchanged, the current
solutions become not feasible, etc.

Table 2, Effect of Demand and cost parameters on optimal values

Optimum Values

Parameters T Q Tl |l Setup Cost | Holding Cost | Deteriorative Cost | Total Cost
0.01 | 0.2577 | 2834.97 | 0.2362 | 236.25 | 1940.05 1726.19 138.09 1323804.34
0.02 | 0.2486 | 2734.92 | 0.2279 | 227.91 | 2011.02 1637.08 261.93 1323910.03
H 0.03 | 0.2404 | 2644.70 | 0.2203 | 220.39 | 2079.62 1557.56 373.81 1324011.00
0.04 | 0.2330 | 2562.82 | 0.2135 | 213.56 | 2146.07 1486.07 475.54 1324107.69
0.05 | 0.2262 | 2488.05 | 0.2073 | 207.34 | 2210.56 1421.37 568.55 1324200.49
0.01 | 0.2577 | 2834.97 | 0.2362 | 236.25 | 1940.05 1726.19 138.09 1323804.34
0.02 | 0.2561 | 2817.35 | 0.2347 | 234.78 | 1952.18 1702.22 136.17 1323790.58
R 0.03 | 0.2545 | 2800.26 | 0.2333 | 233.35 | 1964.09 1678.88 134.31 1323777.28
0.04 | 0.2530 | 2783.68 | 0.2319 | 231.97 | 1975.80 1656.14 132.49 1323764.44
0.05 | 0.2515 | 2767.56 | 0.2306 | 230.63 | 1987.31 1633.98 130.72 1323752.01
400 | 0.2306 | 2537.49 | 0.2114 | 211.45 | 1733.99 1549.35 123.94 1323407.29
450 | 0.2445 | 2690.43 | 0.2242 | 224.20 | 1839.85 1640.39 131.23 1323611.47
Sc 500 | 0.2577 | 2834.97 | 0.2362 | 236.25 | 1940.05 1726.19 138.09 1323804.34
550 | 0.2702 | 2972.36 | 0.2476 | 247.69 | 2035.41 1807.53 144.60 1323987.54
600 | 0.2821 | 3103.56 | 0.2586 | 258.42 | 2126.59 1884.99 150.80 1324162.39
13 0.2751 | 3026.65 | 0.2522 | 252.22 | 1817.18 1594.32 147.16 1323558.68
14 0.2660 | 2926.10 | 0.2438 | 243.84 | 1879.63 1661.49 142.41 1323683.53
H c 15 0.2577 | 2834.97 | 0.2362 | 236.25 | 1940.05 1726.19 138.09 1323804.34
16 0.2501 | 2751.88 | 0.2293 | 229.32 | 1998.63 1788.69 134.15 1323921.47
17 0.2432 | 2675.70 | 0.2229 | 222.97 | 2055.53 1849.18 130.53 1324035.25
100 | 0.2593 | 2852.52 | 0.2377 | 237.71 | 1928.11 1736.59 115.79 1323780.48
110 | 0.2585 | 2843.70 | 0.2369 | 236.97 | 1934.69 1731.37 126.96 1323792.43
Dc 120 | 0.2577 | 2834.97 | 0.2362 | 236.25 | 1940.05 1726.19 138.09 1323804.34
130 | 0.2569 | 2826.32 | 0.2355 | 235.52 | 1945.98 1721.06 149.15 1323816.21
140 | 0.2561 | 2817.75 | 0.2348 | 234.81 | 1951.91 1715.98 160.15 1323828.05
100 | 0.2593 | 2852.52 | 0.2377 | 237.71 | 1928.11 1736.59 115.79 1100000.00
1103804.34
|:>C 110 | 0.2585 | 2843.70 | 0.2369 | 236.97 | 1934.69 1731.37 126.96 1210000.00
1213804.34
120 | 0.2577 | 2834.97 | 0.2362 | 236.25 | 1940.05 1726.19 138.09 1320000.00
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1323804.34
130 | 0.2569 | 2826.32 | 0.2355 | 235.52 | 1945.98 1721.06 149.15 1430000.00
1433804.34
140 | 0.2561 | 2817.75 | 0.2348 | 234.81 | 1951.91 1715.98 160.15 1540000.00
1543804.34

Managerial observations: A sensitivity analysis is performed to study the effects of change in the system
parameters, rate of deteriorative items (&), setup cost per set (Sc ) holding cost per unit/ unit time (HC )

rate of increase in demand (R), production cost per unit ((Cp ), cost of deteriorative item per unit (D) on

optimum cycle time (T), maximum inventory (Il), Production time (Tl) , setup cost, production cost,

holding cost, deteriorative cost and total cost. The sensitivity analysis is performed by changing (increasing or
decreasing) the parameter taking at a time, keeping the remaining parameters at their original values. The
following influences can be obtained from sensitivity analysis based on table 2.

1) There is a positive relationship between in increase in rate of deteriorative items x with the setup cost,

deteriorative cost and total cost and there is a negative relationship between increase in rate of perishable
items with optimum quantity, cycle time, production time, maximum inventory.

2) there is a positive relationship between increase in the cost of set per unit (S ) with optimum cycle time
(T), optimum quantity (Q), production time (Tl), production time (Tl), maximum inventory(ll), setup

cost, holding cost, deteriorative cost and total cost.
3) there is a positive relationship between increase in the cost of carrying inventory per unit per per unit time

(Hc ) with setup cost, holding cost and total cost but there is a negative relationship between increase in the
cost of carrying inventory per unit per unit time with cycle time (T) and optimal lot size (Q), production time
(Tl) , maximum inventory (Il), deteriorative cost .

4) Similarly, other parameters deteriorative cost per unit (DC ) production cost per unit (F’C ), can also be
observed from the table 2.

3.2. Model 2 Production Inventory Model for Deteriorative items integrated with Continuous
Compound Demand and Growth of Demand

In this model, an production inventory model for deteriorative items with continuous compound demand and
integrated with the growth of demand is considered. The growth rate of demand in the production time T, is

Y (L+1)" and the growth of demand in the decline period is Y (L—1)" . The inventory level at time T, is

(X -Y(@+ i)n )Tl and the remaining are same as given in the model 1 of this paper. The differential
equation for the production period is

d _ \n 4Rt
a|(t)+ﬂ|(t)_X—Y(1+|) et 0<t<T, (16)

The differential equation for the decline period

d .
a|(t)+y|(t)=—Y(1—|) e T, <t<T 17)

With the conditions of boundary

I(t)=0,1(T)=1,,1(T)=0 (18)
The derivation of the equation (15) is

| (t) = é(l_ e_/‘t )+ ﬁ(e_m _ eRt)

M R+ u (19)
Note: When n =i =0, then the above equation becomes CCD as per model 1

I(t) =%(1—e”“)+ Riiﬂ(e"‘t —e™)
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The derivation of the equation (16) is
Y(1-i _
I(t) — ( ) ( (R+)T—pt eRt)
R+ (20)
Note: When n =i =0, then the above equation becomes CCD as per model 1

1(t) = Y (e(R+,u)T—,ut _eRt)
R+ u

Tofind T,and I, :
From the diagram, I(t) for production period and I(t) for the decline period are same. Therefore, substitute T,
in the equations (19) and (20) for calculating T, and Q,
5(1_e—ﬂT1)+M(e—/‘T1 _eRTl) Y(@-i)" ( (R )T =T, _eRTl)
R+ u R+u
On simplification
~ YQ-D)"T
POX Y@+ Y Q@-i)"

(21)

, Yr oo
Note: Whenn=i=0then, T, = Ywhlch is model 1 and

L =(X =Y@+D)")T, @0 I, =YA-i)" (T -T,) 22)
Theorem 2: The average system cost functions TC(T,) and TC(T) are strictly convex.

Proof: The optimality conditions can be easily shown that TC(T,) and TC(T) are convex function in T,
and T. Hence, an optimum cycle time T, and T can be calculated from

(i) a%[TC(F )]=

22 [TC(T)] > Oand

1

822 [fcm]>o

0
(i) —|TC =
~rcm)]
The total cost function comprises of setup cost, holding cost, production cost and perishable cost. Therefore,
the total cost function is as follows:
S
1. Setup cost = ?C (23)

2. Production cost = YP, (24)

3. Holding cost (HC) —TC{J' (t)dHT{I(t)dt]

K sem g) L)

Ru(R+ ) et

= HeF[X g YO ol YO oo _ gl |=
TC_j{(l—e J+ [ -e )}dt+Tj1M(e( T e )dt} % e

(ReRT+‘ueRT _Re(R~;1)T—6’F1_‘ueRT1)

Ru(R+4)
X : YA+ (L -
2T M)~ =T (R(e™# —1 1
:tk,”2@l+e ) de+#¢ (e )+ u(e ) (25)
T_ya-n" ((R+ﬂ)eRT — e _Re(Rﬂt)T—uTl)

L Ru(R+u)
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Y

K (T, +em 1) (REe™™ —1)+ u(e™ -1)

Note: Whenn=i=0, then HC = H. | #° Ru(R+ ) which is like
T 1 R+4)T—pT.
= ((R+ e - eRT1_Re( )T =Ty
RIR + o) (( %) u )
model 1
o X (e 1) YLD (e gy e 1)
4. Deteriorative cost = uD. | 1 RY (R + u) (26)
T —j)" T
_M((R-Fﬂ)em- —/leRTl _ Re(R T ‘UTI)
Ru(R+ u)

Theorem 2: The average system cost functions TC(T,) and TC(T) are strictly convex.

Proof: The optimality conditions can be easily shown that TC(T,) and TC(T) are convex function in T,

and T. Hence, an optimum cycle time T, and T can be calculated from

O I 2 frem)- :
2

(i) a—T[TC(F)]= [rcm]>o

The total cost function comprises of setup cost, holding cost, production cost and perishable cost. Therefore,
the total cost function is as follows:

22 [TC(T)]> 0and

X (T, vem 1) Y)Y (e gy 4 et 1)
Tem=He yp | Het4Dc | 4 Ru(R+ 1) (27)
T

T _ﬂ((R_'_lu)eRT et _Re(R+;1)T—yT1)
Ru(R+ 1)

The equation (27) is partiallydifferentiatew.r.t. T,

X Sy Y@+ iy
I e 0
aT, Y- (Rue™ e _ Ry '
Ru(T + 1)

Therefore, the average system cost functions TC(Tl) is strictly convex.

On simplification, T, = MGDA (28)
X=Y@+D)"+Y@-i)"
Therefore, the average system cost functions TC(T. 1) and TC(T) are strictly convex.

Compare with the equation (21) and (27) with the above value, then both values are same.
The equation (26) is differentiate partially w.r.t. T,

R v —1)+M(R(e*"“ 1)+ u(e™ -1)

0 u Ru(R+ )

—TC(T) =—Sc +(H¢ +uD) RT RT RT, =0
or YA=D)" [(R+u)Te™ —(R+ p)e™ + pe™

R/‘(R + 1) = R(R + )T eFri)Tg M | Re(RHAIT o=y
62
TC(T)>0
aTZ (r)

Therefore, the average system cost functions TC(T) is strictly convex. Therefore, TC(T) and TC(T,) both

are strictly convex.
On simplification
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YA+ (o -
Ra(R e RE T D uCT ) ;.

Y(-i)" (TR+@)Te™ —(R+u)e™ + ue™ " He + D,
Rﬂ(R + /H) R(R + ﬂ)T e(R+/1)T e*/—lTl + Re(R+,u)T e—,uTl
Making higher order equation With some simplifications,

_# (yTl +e - 1)+

XTlZ XuTy _ XpT T’ 2 NN 1
- @i T Re s (RE Ry u?)
2 6 24 @+0" (R—p) =+ ( Yk
LR (R R+ Z)L_L+w s
—Y@-i)" 2 “ H+ H YR > e+ D,
_,u(R+,u)T2T12 _2RT® 4Tt N (R+)°T°T, SR SRuTY pT
[ . L \T.2 _\nT2 .
—(X _Y(1+|)n +Y(1_I)n)é+%

%(X,u+ RY (L 1)" — ¥ (L+1)" —RY (L= )" + ¥ @—i)" T3
1

2 SC
3(2RY(1 )"+ ¥ (L—i)" T2 — (RY(l i)+ Y =) 77, " He + D,
214( Xp? + (Y @Q+0)" =Y A—i)")(R? — Ru+ 12 )T,* +M(R T 2T
+$(3R2+3Rﬂ+;ﬁ)T4—@(R2+2Rﬂ+u2)

Substitute the value of T, and simplify

(Y@a—i)"(Y@+i)" —Y@—i)" XR? — Ry + p?) — Xu®
(X -vy@a+n"+vya-i")

L1 sy @iy @R 4 3R+ )+ O A= R+ ) -
24 (X —Y@+i"+ya—in")
C8(r@—i" ) (R + 2Ru + p?)

X —YA+D)"+Y@A-D")
(va—"P(Xu+(R—YA+D)" —(R—)Y@A—D)")
1 (X -y@a+i"+ya—iny

+= B
6 —")°
2R+ 20D - ;<saf>i§t<1va_>m
Ya-—i"(X —y@a+i" ) _ Se
2(X —Y@+"+y@-n" )  He + 4D

The fourth order equation is reduced into third order equation as

0 )3 \n \n

(v@=i)"f (Xu+ (R- ) @+i)" -ya-i")
1 (X =Y@+i)"+Y@-i)")® T3
6 _i)"f 29

+20R+ @)Y (L-1)" - 3(R+”)_(Y(1 ) )_ @)

X=-Y@+)"+Y(@-i)"

Y(A-i) (X =Y (1+i)") oo S

2AX -y @+i)" +Y(@-i)") H. + 1D,
which is optimum solution in third order equation.
Note: When T2 =0 and n =0 then the equation (28) reduces to basic inventory model

- \/ 2XS
Y(X=Y)(Hc + D)
Numerical Example Let us consider the cost parameters
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X = 12000units, Y = 11000units, H =15, P. = 120, S =500, D, =120, ££=0.01, R=0.01,n=2,i=0.01
Optimum solution

Optimum Quantity Q*= 3047.01; T, =0.2583, T= 0.2770, |, =201.22,

Production cost = 1320000, Setup cost = 1805.04, Holding cost = 1428.71, ,

Deteriorating cost = 114.29, and Total cost = 1323348.05., Production cost 1320000
Table 3. Variation of Rate of Deteriorating Items with inventory and total Cost

Y2 T Q T1 |1 Setup cost | Holding cost | Deteriorating cost | Total cost
0.01 | 0.2770 | 3047.01 | 0.2583 | 201.22 1805.04 1428.71 114.29 1323348.05
0.02 | 0.2670 | 2937.62 | 0.2490 | 193.99 1872.26 1379.09 220.65 1323471.99
0.03 | 0.2581 | 2838.93 | 0.2406 | 187.48 | 1937.35 1334.16 320.20 1323591.71
0.04 | 0.2499 | 2749.30 | 0.2330 | 181.55 2000.50 1293.26 413.84 1323707.61
0.05 | 0.2424 | 2667.42 | 0.2261 | 176.15 2061.91 1255.79 502.32 1323820.03
0.06 | 0.2356 | 2592.24 | 0.2197 | 171.18 2121.71 1221.32 586.23 1323929.27
0.07 | 0.2293 | 2522.89 | 0.2139 | 166.60 | 2180.03 1189.45 666.09 1324035.57
0.08 | 0.2235 | 2458.65 | 0.2084 | 162.36 2236.99 1159.87 742.32 1324139.18
0.09 | 0.2180 | 2398.94 | 0.2033 | 158.42 2292.67 1132.32 815.27 1324240.28
0.10 | 0.2130 | 2343.23 | 0.1986 | 154.74 2347.18 1106.58 885.26 1324339.03

The above table is a study of rate of the deteriorative items with cycle time, optimum quantity, Production
timeT, , the maximum inventory |, , setup cost, production cost, holding cost, deteriorating cost and total

cost. When the rate of deteriorative items increases, the setup cost, deteriorating cost and total cost increases,
as a result there is positive relation between them. When the rate of deteriorative items increases, the cycle

time, optimum quantity, production time T, , the maximum inventory |, and holding cost decreases that
result in a negative relationship between them.

1325000 1325000
o -
w 1324000 - p @ 1324000 vttt
o O 1323000
O 1323000 o L]
— — 1322000 :
s 1322000 s ~ < o
) )
(o] - un o o N N o
(= o O o = N o (@]
-~ -~ -~ -~ -~
o O O o o
Rate of Deteriorative items Cycle Time
Figure 4 Relationship between Rate Figure 5 Relationship between Rate of Cycle Time with
Deteriorative items with Total Cost Total Cost Sensitivity Analysis
Table 4 Effect of Demand and cost parameters on optimal values
Parameters Optimum Values
T -|-1 Q |1 Setup cost | Holding cost | Deteriorating cost | Total Cost
0.01 0.2770 | 3047.01 | 0.2583 | 201.22 | 1805.04 | 1428.71 114.29 1323348.05
0.02 0.2670 | 2937.62 | 0.2490 | 193.99 | 1872.26 | 1379.09 220.65 1323471.99
M 0.03 0.2581 | 2838.93 | 0.2406 | 187.48 | 1937.35 | 1334.16 320.20 1325591.71
0.04 | 0.2499 | 2749.30 | 0.2330 | 181.55 | 2000.50 | 1293.26 413.84 1323707.61
0.05 0.2424 | 2667.42 | 0.2261 | 176.15 | 2061.91 | 1255.79 502.32 1323820.03
400 0.2489 | 2738.80 | 0.2322 | 180.86 | 1606.53 | 1291.50 103.32 1323001.36
450 0.2634 | 2897.55 | 0.2456 | 191.34 | 1708.33 | 1362.38 108.99 1323179.70
S 500 0.2770 | 3047.01 | 0.2583 | 201.22 | 1805.04 | 1428.71 114.29 1323348.05
C [550 0.2898 | 3188.55 | 0.2703 | 210.56 | 1897.41 | 1491.16 119.29 1323507.86
600 0.3021 | 3323.24 | 0.2817 | 219.46 | 1986.01 | 1550.27 124.02 1323660.31
13 0.2949 | 3244.34 | 0.2751 | 214.25 | 1695.25 | 1313.60 121.25 1323130.11
14 0.2855 | 3140.95 | 0.2663 | 207.42 | 1751.06 | 1372.18 117.61 1323240.86
H 15 0.2770 | 3047.01 | 0.2583 | 201.22 | 1805.04 | 1428.71 114.29 1323348.05
C |16 0.2691 | 2961.16 | 0.2510 | 195.54 | 1857.37 | 1483.36 111.25 1323451.99
17 0.2620 | 2882.29 | 0.2443 | 190.34 | 1908.28 | 1536.33 108.44 1323552.98
100 0.2770 | 3047.01 | 0.2583 | 201.22 | 1805.04 | 1428.71 114.29 1100000.00
1103348.05
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110 0.2770 | 3047.01 | 0.2583 | 201.22 | 1805.04 1428.71 114.29 1210000.00
1213348.05

P 120 0.2770 | 3047.01 | 0.2583 | 201.22 | 1805.04 1428.71 114.29 1320000.00
C 1323348.05
130 0.2770 | 3047.01 | 0.2583 | 201.22 | 1805.04 1428.71 114.29 1430000.00
1433348.05

140 0.2770 | 3047.01 | 0.2583 | 201.22 | 1805.04 1428.71 114.29 1540000.00
1543348.05

100 0.2786 | 3065.11 | 0.2598 | 202.41 | 1794.38 1436.71 95.78 1323326.88

110 0.2778 | 3056.02 | 0.2591 | 201.81 | 1799.72 1432.63 105.06 1323337.48

D 120 0.2770 | 3047.01 | 0.2583 | 201.22 | 1805.04 1428.71 114.29 1323348.05
€ [ 130 0.2761 | 3038.08 | 0.2575 | 200.62 | 1810.35 1424.75 123.47 1323358.58
140 02756 | 3029.23 | 0.2568 | 200.04 | 1815.64 1420.83 132.61 1323369.09

0.0025 | 0.2868 | 3155.82 | 0.2675 | 208.40 | 1742.87 1540.49 123.23 1323406.54

0.005 0.2834 | 3117.43 | 0.2643 | 205.87 | 1764.27 1501.29 120.10 1323385.66

R 0.01 0.2770 | 3047.01 | 0.2583 | 201.22 | 1805.04 1428.71 114.29 1323348.05
0.02 0.2660 | 2926.26 | 0.2481 | 193.24 | 1879.52 1302.08 104.16 1323285.77

0.03 0.2568 | 2825.41 | 0.2395 | 186.58 | 1946.62 1193.97 95.52 1323236.12

0.0025 | 0.2556 | 2812.29 | 0.2353 | 222.38 | 1955.69 1599.27 127.94 1323682.91

0.005 0.2621 | 2883.82 | 0.2423 | 215.64 | 1907.18 1545.17 123.61 1323575.98

i 0.01 0.2770 | 3047.01 | 0.2583 | 201.22 | 1805.04 1428.71 114.29 1323348.05
0.02 0.3172 | 3489.99 | 0.3014 | 167.48 | 1575.93 1150.56 92.04 1322818.54

0.03 0.3840 | 4224.49 | 0.3721 | 122.85 | 1301.93 766.76 61.34 1322130.03

1 0.2621 | 2883.46 | 0.2423 | 215.67 | 1907.42 1545.45 123.63 1323576.52

2 0.2770 | 3047.01 | 0.2583 | 201.22 | 1805.04 1428.71 114.29 1323348.05

n 3 0.2951 | 3246.25 | 0.2777 | 185.18 | 1694.26 1297.60 103.81 1323095.67
4 0.3177 | 3495.46 | 0.3019 | 167.08 | 1573.46 1147.35 91.78 1322812.60

5 0.3470 | 3817.95 | 0.3331 | 146.19 | 1440.56 970.19 77.61 1322488.35

Managerial insights: A sensitivity analysis is performed to study the effects of change in the system
parameters, rate of deteriorative items ( ££ ), ordering cost ( SC) , holding cost (C,, ), production rate per unit

( PC ).on optimal values that is optimal cycle time (T), optimal quantity (Q), production time (T,),

consumption time (T, ), maximum inventory ( I,), setup cost, holding cost, defective cost, reworking cost

and total cost. The sensitivity analysis is performed by changing (increasing or decreasing) the parameter
taking at a time, keeping the remaining parameters at their original values. The following influences can be
obtained from sensitivity analysis based on table 1.

1) with the increase in the rate of deteriorative items, the setup cost, deteriorating cost and total cost increases,
as a result there is positive relation between them and with the increase in the rate of deteriorative items

increases, the cycle time, optimum quantity, Production time T, , the maximum inventory |, and holding
cost decreases that results in a negative relationship between them.
2) with the increase in setup cost per unit ( Sc) , optimum quantity (Q*), cycle time (T), production time T,,

consumption time (T, ) maximum inventory I,, setup cost, holding cost, deteriorative cost and total cost
increases then there is positive relationship between them.

3) with the increase in holding cost per unit per unit time ( H ¢ ), thesetup cost, holding cost, deteriorative
cost and total cost increases then there is positive relationship between them but optimal cycle time (T) and
optimal lot size (Q), production time (T, ), consumption time (T, ), maximum inventory ( |, ) decreases then
there is negative relationship between,

4) Similarly, other parameters, production cost per unit P, , D¢, R, i and n number of years can also be
observed from the table 4.

4. RELATIONSHIP BETWEEN CONSTANT DEMAND. CONTINUOUS COMPOUND DEMAND
(CCD) AND INTEGRATED CCD WITH GROWTH OF DEMAND
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Figure — 6Relationship between constant demand, CCD and CCD with Growth of Demand
The following table and diagrams show the relationship between the constant demand, CCD and CCD with
Growth of Demand. From the table, it is observed that the setup cost is less in constant demand with
compared to continuous compound demand, the holding cost, perishable cost and total cost are is more in
constant demand with compared to continuous compound demand. And also, the setup cost, holding cost,
deteriorative cost and total cost are less in CCD with Growth of Demand compare with Constant and CCD.
The basic formula in production inventory model with constant demand rat is given below

T \/ 2XS.
Y(X=Y)(Hc +uDc)
For example, Let us consider the cost parameters for constant demand is given below
X = 12000 units, Y = 11000 units, H =15, P, =120, S =500, # =0.01, R=0.01, D= 120
Optimum solution
T=0.2594, Q = 2853.40, T, = 0.2377, 1,=237.70, Setup cost = 1927.52,

Production cost = 1320000, Holding cost = 1783.37, Cost of Deteriorative = 142.67,
Total cost = 1323853.56
Table 5. Relationship between constant demand CCD and CCD with Growth of Demand

Item of cost Constant Demand | Continuous Compound Demand (CCD) | Integrated CCD with Growth of Demand
Setup cost 1927.52 1940.05 1805.04

Holding cost 1783.37 1726.19 1428.71

Perishable cost | 142.67 138.09 114.29
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[ Total cost | 1323853.56 | 1323804.34 | 1323348.05

5. CONCLUSION

In this paper, a production inventory model for deteriorating items with continuous compound demand (CCD)
and growth of demand are considered for developing the mathematical models. In model 1, continuous
compound demand (CCD) and in the model2, continuous compound demand integrated with growth of
demand is considered. The following points are observed during our study. All inventory cost (setup cost,
holding cost, deteriorative cost and total cost) are less in model 2 compared with model 1 and constant
demand rate. With the increase in the rate of deteriorative items, the setup cost, deteriorating cost and total
cost increases, as a result there is positive relation between them and with the increase in the rate of

deteriorative items increases, the cycle time, optimum quantity, Production time T, , the maximum inventory
I, and holding cost decreases that results in a negative relationship between them. With the increase in setup
cost per unit ( SC) , optimum quantity (Q*), cycle time (T), production time T,, consumption time (T, )
maximum inventory |, , setup cost, holding cost, deteriorative cost and total cost increases then there is

positive relationship between them. With the increase in holding cost per unit per unit time ( HC ), the setup

cost, holding cost, deteriorative cost and total cost increases then there is positive relationship between them
but optimal cycle time (T) and optimal lot size (Q), production time (T, ), consumption time (T, ), maximum

inventory ( |, ) decreases then there is negative relationship between,

Several extensions can be made to this research:
1. The production rates in two models were time dependent demand and the demand rate was
increasing over growth rate of demand. Other extension to this research could be to consider probabilistic
demand or production rate.
2. The models developed in this research were considered for a single time. One may relax this
assumption and consider models with multiple items.
3. Another extension to this research could be to attempt to prove the convexity of the total cost
function where interest rate is included in the total cost function.
4, In developing the models, only one concept was introduced at a time. One may want to investigate
models with combination of several concepts and determine the optimal policies for these cases.
The proposed model can assist the manufacturer and retailer in accurately determining the optimal quantity,
cycle time and inventory total cost. Moreover, the proposed inventory model can be used in inventory control
of certain items such as food items, fashionable commodities, stationary stores and others.
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