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ABSTRACT 

In this paper, we are modeling the concentration of PM10 pollutants using the Generalized Space-Time Autoregressive Moving 

Average (GSTARMA) model. The GSTARMA model is a development of the GSTAR model by remodeling the time effect on 

the GSTAR residual model. The purpose of this research is to compare the performance of the GSTARMA and the GSTAR 
model. The two models are applied to model the concentration of PM10 pollutants located at three Air Monitoring Stations 

(AMS) in the city of Surabaya – Indonesia. The estimation methods employed are OLS and SUR. The results of this study show 

that the GSTARMA model produces better accuracy than the GSTAR model in modeling the PM10 data in Surabaya. Moreover, 
the GSTARMA model can predict well for the two days ahead. 
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RESUMEN 

En este documento, estamos modelando la concentración de contaminantes PM10 utilizando el modelo de media móvil 

autorregresiva espacio-tiempo generalizado (GSTARMA). El modelo GSTARMA es un desarrollo del modelo GSTAR 
mediante la remodelación del efecto de tiempo en el modelo residual GSTAR. El propósito de esta investigación es comparar el 

rendimiento del modelo GSTARMA y el modelo GSTAR. Los dos modelos se aplican para modelar la concentración de 

contaminantes PM10 ubicados en tres estaciones de monitoreo de aire (AMS) en la ciudad de Surabaya, Indonesia. Los métodos 
de estimación empleados son OLS y SUR. Los resultados de este estudio muestran que el modelo GSTARMA produce una 

mejor precisión que el modelo GSTAR al modelar los datos de PM10 en Surabaya. Además, el modelo GSTARMA puede 

predecir bien para los próximos dos días. 

 

PALABRAS CLAVE: GSTARMA, GSTAR, OLS, SUR, PM10.   

 
 

1. INTRODUCTION 

Time series data forecasting has now developed by involving the existence of location factors, then referred to 

as spatio-temporal data forecasting. Several methods can be used to predict spatio-temporal data, one of 

which is Generalized Space-Time Autoregressive (GSTAR). The GSTAR method is the development of the 

Space-Time Autoregressive (STAR) model introduced by Cliff & Ord and later developed by Pfeifer & 

Deutsch [1,2]. The STAR model assumes that each location is homogeneous because the time and location 

parameter values for all variables have the same amount. This assumption is one of the weaknesses of the 

STAR model, which was subsequently developed by the GSTAR model by Ruchjana [3]. The GSTAR model 

is a generalization of the STAR model that assumes the value of the autoregressive parameters has a different 

value (heterogeneous) at each location. The research using the GSTAR method has been widely used, 

including Suhartono & Subanar [4], Ruchjana, Borovkova, & Lopuhaa [5], Suhartono, Wahyuningrum, 

Setiawan, & Akbar [6], and Akbar, Setiawan, Suhartono, Ruchjana, & Riyadi [7]. The GSTARMA model is 

an extension of the STARMA model, which is characterized by the influence of previous time on the 

autoregressive and moving average models. Besides the impact of time, there are also influences of other 

locations, as indicated by spatial autocorrelation [2]. The research using the GSTARMA model include Min, 
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Hu, & Zhang [8], Nisak [9], and Andayani, Sumertajaya, Ruchjana, & Aidi [10]. These researches not only 

involve time in the autoregressive and moving average models but also patterns of non-stationarity of data. 

The GSTARMA model has been applied in several fields, including in the economic sector, i.e., the price of 

rice [10], the export of chocolate commodities [11], climatology, i.e., rainfall [9], and transportation [8]. The 

data used in the research contained interdependent patterns of location. Besides these data, air pollution data 

also has a habit of dependencies between locations, where air conditions in an area are influenced by air 

conditions in the surrounding area [12]. Air conditions in an area are affected by several pollutants, including 

particulate matter (PM10), carbon monoxide (CO), sulfur dioxide (SO2), nitrogen dioxide (NO2), and ozone 

(O3) [13]. The toxicology test gives the result that PM10 that is sucked directly into the lungs and settles in the 

alveoli can harm the respiratory system [14]. Rahim & Yeremiah observed that 25% of sufferers of 

respiratory disorders in Indonesia were caused by PM10 [15]. PM10 is one of the pollutants that are often the 

main focus in controlling air quality. Some research on the prediction of pollutant PM10 has been done as the 

early warning on air quality, including by Chrisdayanti, and Suharsono [12] and Suhartono, Prabowo, Prastyo, 

and Lee [16]. Both kinds of research use a univariate method approach without involving location 

dependencies. So that in this research, the modeling of PM10 data was developed by involving location factors 

using the GSTARMA method. PM10 data used are daily PM10 data in the city of Surabaya by using three Air 

Monitoring Stations (AMS) namely the AMS1, AMS2, and AMS3. In this research, the best modeling will be 

obtained on PM10 data using a combination of different parameter estimates and location weights. The 

selection of the best model is determined based on the smallest RMSE value. 

2. MATERIALS AND METHODS 

 

2.1. Source Data 

 

The data used in this research are PM10 daily concentration data in the city of Surabaya. Data were collected 

from three main Air Monitoring Stations (AMS) in Surabaya, namely AMS1 (Taman Prestasi), AMS2 

(Wonorejo), and AMS3 (Kebonsari). The PM10 data is secondary data obtained from the Air Quality 

Monitoring System (AQMS) Surabaya. The period of the data is from January 1
st
 to December 31

st
, 2018. The 

data is divided into two parts, namely training data from January 1
st
 to December 24

th
, 2018, and testing data 

from December 25
th

 to December 31
st
, 2018. The data is analyzed using SAS software. 

2.2.  Steps of Analysis 

 

The analysis steps used in this research as follows. 

1. Conduct descriptive analysis of PM10 data using time series plots. 

2. Calculate the location weights for GSTARMA modeling. 

3. Eliminate the pattern of non-stationarity in PM10 data by modeling time series regression using a 

predictor variable in the form of the intervention effect 

4. Identify the GSTAR and GSTARMA model order on time series regression residual data using 

CCF and PCCF. 

5. Estimate the parameters of the GSTAR and GSTARMA models using the OLS and GLS methods. 

6. The best model selection method for training data uses the RMSE criteria. 

7. Forecast the data testing by using the best model in training data. 

2.3. GSTARMA Model Identification 

 

The determination of the AR (p) order and MA(q) order on the GSTARMA model can be done using the 

Cross-Correlation Function (CCF) and Partial Cross-Correlation Function (PCCF). CCF serves to measure the 

magnitude and direction of the correlation between two random variables [17]. CCF is used to identify the 

order of the MA model, while the PCCF is the order of the AR model. CCF equation between 
tx  and 

ty  is 

given in equation (1). 
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(1) 

The PCCF equation in lag s is like an equation (2). 
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2.4. Generalized Space-Time Autoregressive Moving Average (GSTARMA) 

 

The GSTARMA model is a development of the GSTAR model by remodeling the residual GSTAR model. In 

general, the GSTARMA model is given in equation (3) [18]. 

   
0 0

1 1 1 1
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Where 0s  = 
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  as 

an autoregressive parameter at the i
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-location, the s
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-time order, and the k
th

-spatial order. 
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W  is weight 

matrix  N N  the k
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 spatial order (where k = 0,1,...,
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, whereas 
0s

  and 
sk

  as moving average 

parameter at the i
th

 location, the s
th 

time order, and the k
th

 spatial order. tu  is residual vector following a 

normal distribution with an average of zero and covariance . This study uses uniform weights and inverse 

distances.  

a. Uniform Weights 

Uniform weights assume that the locations used in the research are homogeneous, so the weight values used 

are the same for each location. The formula for uniform location weights is formulated in equation (4). 

1
,ij

i

w
s

   (4) 

where is  is the number of locations adjacent to the i
th

-location. In this research, there are three locations used, 

so the matrix for uniform weights is 
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b. Inverse Distance Weights 

The use of inverse distance weights is based on the actual distance between locations. Weight calculation 

using the inverse distance method is obtained from the normalization of the actual inverse distance result. The 

formula used to calculate inverse distance weights is given in equation (5). 
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Table 1 is the distance of the location of each AMS in Surabaya. 
Table 1. Distance between the three AMS (in km) 

AMS 1 2 3 

1 0   

2 13.1 0  

3 9.9 19.5 0 

 

Calculation of distance inverse matrix using the data in Table 1 is reported below. 
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2.5. Estimation of GSTARMA Model Parameters 

GSTARMA model with order one, for spatial and time at three locations (GSTARMA (k = 1, p = 1, q = 1)) as 

in the following equation (6). 
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The model parameters in equation (7) can be estimated by the Ordinary Least Square (OLS) method with the 

solution formulated in equation (8) below. 
-1ˆ ( )OLS

 β XX XY                                                                 (8) 

The solution to the estimation of GSTARMA parameters using the Generalized Least Square (GLS) method 

is given in equation (9). 
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where   0, u  * ,  uu  and  I.   

 

2.6. Steps to Obtain the Best GSTARMA Model 

 

The steps of building the GSTARMA model until the best model is obtained are as follows:  

 

1. Assume the data has been stationary in the mean and variance. 

2. Calculates uniform weights (like equation (4)), and inverse distance weights (like equation (5)) used 

as weights in the GSTAR and GSTARMA model. 

3. The data is divided into two parts, i.e., training data used as modeling and testing data used as model 

validation. 

4. Determine the autoregressive order (p) and the moving average order (q) to identify the GSTAR and 

GSTARMA models using CCF (like equation (1)) and MPCCF (like equation (2)). 

5. Estimate the parameters of the GSTAR and GSTARMA models using the OLS (as in equation (8)) 

and SUR (as in equation (9)) method.  

6. Calculate predictions from each model obtained from step 5. 

7. The best model is obtained by selecting the smallest RMSE value in the testing data of each model. 

 

3. RESULT AND DISCUSSION 

 

The characteristics of PM10 data from three AMS in Surabaya, namely AMS1, AMS2, and AMS3 starting 

from January 1
st
 to December 31

st
, 2018, are displayed through time series plots in Figure 1. Figure 1 shows 

that the pattern of PM10 data tends to be not stationary, as indicated by very high fluctuations at some point. 

PM10 data are divided into two parts, training and testing data. The training data is used from January 1
st
 to 

December 24
th

, 2018.  The testing data has period from December 25
th

 to December 31
st
, 2018. 

PM10 data used in GSTAR and GSTARMA modeling need to be stationary in the mean, so the data must be 

modeled by time-series regression first. The time-series regression modeling uses predictor variables in the 

form of daily intervention events. The purpose of this time series regression modeling is to obtain stationary 

data patterns in the mean for GSTAR and GSTARMA modeling. The time series plot of the residual of the 

time series regression model in Figure 2 has shown a stationary pattern in the mean so that it can proceed to 

the next modeling, GSTAR, and GSTARMA. 

The GSTAR and GSTARMA modeling are using two weights, uniform, and inverse distance weights. 

Besides, a combination of parameter estimation is also used in OLS and SUR. The determination of the 

autoregressive order in the GSTAR model can be identified through the PCCF plot in Figure 4. The PCCF 

plot in Figure 4 shows that there is a tendency to lag that correlates among the three AMS at lag 4, so the 

order of the GSTAR model is GSTAR([4]1). Next, to identify moving average order through CCF. In the CCF 

plot based on Figure 3, the residual of the time series regression of PM10 at the AMS3 correlates significantly 

with AMS1 at lag 3. The residual at AMS1 correlates with AMS3. The residual at AMS2 correlate with 

AMS1 at lag 7. The relationship between locations of PM10 data has been represented by lag 4 in the PCCF 

plot as well as by lag 3 and lag 7 in the CCF plot. 
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Figure 1. Time Series Plot of PM10 Data at AMS1, AMS2, and AMS3  

 

  

 
Figure 2. Time Series Plot the Residual of Time Series Regression of PM10 Data at AMS1, AMS2, and AMS3 

 

Schematic Representation of Cross Correlations 
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Lag          17   18    19    20    21    22    23    24    25    26    27    28    29    30    31    32   
AMS1       . . .   . . .   . . .   . . .   . . .   . . .   . . .   . . .   . . .   . . .   . . .   + . .   . . .   . . .   . . .   . . . 
AMS2       . . .   - . .   . + .  . . .   . . .   . . .   . . .   . . .   . . .   . - .   . . .   . . .    . . .   . . .   . . .   . . . 
AMS3       +. -  +. .    . . .   . . .   . . .   . . .   - . .   . . .   . . .   . - .   . . .   . . .   . . .   . . .   . . .   . . . 

                               
+ is > 2*std error,  - is < -2*std error,  . is between 

Figure 3. CCF Plot of Residual Time Series Regression of PM10 Data at AMS1, AMS2, and AMS3 

Schematic Representation of Partial Cross Correlations 
 

Variable/ 
Lag           1       2       3      4      5      6      7       8       9      10    11    12    13    14    15    16   
AMS1      + . .   + . .   . . .   - . .   - . .   . . .   . . +   . . +   . . .   - . .   . . .   . . +   . . .   . . .   . . .   . . .  
AMS2      . . .    . . .    . . .   . - .   . . .   . - .   . . .    . + .   . . .   . . .    . . .   . . .   . . .   . . .   . . .    . . .  
AMS3      . . +   . . .    - . .   . - .   - . .   . . .   . . .    . . .    . . .   . . .   - . .   . . .    . . .   . . .   . . .    . . .  
  

 
Variable/ 
Lag          17    18    19    20    21    22    23    24    25    26    27    28    29    30    31    32    
AMS1       . . .   . . .   . . .   . . .   . . .   . . .   . . .   . . .   . . .   . . .   . . .   . . .   . . .   . . .   . . .   . . .   
AMS2       . . .   - . .   . + .  . . .   . . .   . . .   . . .   . . .   . . .   . . .   . . .   . . .   . . .   . . .   . . .   . . .   
AMS3       . . .   . . .   . . .   . . .   . . .   . . .   - . .   . . .   . . .   . - .   . . .   . . .   . . .   . . .   + . .   . . .   

 
+ is > 2*std error,  - is < -2*std error,  . is between 

Figure 4. PCCF Plot of Residual Time Series Regression of PM10 Data at AMS1, AMS2, and AMS3 

The GSTARMA modeling used the GSTARMA([4]1, [3,7]1) model using the estimated OLS parameters and 

uniform weights. For other GSTAR and GSTARMA modeling, using OLS parameter estimation with distance 

inverse weight and using SUR parameter estimation with the uniform weight and distance inverse have the 

same order, namely GSTAR([4]1) and GSTARMA([4]1,[3,7]1). The selection of the best method for 

predicting PM10 data is using the smallest RMSE values in the testing data. Figure 5 shows the RMSE values 

of the three AMS of  PM10 testing data. Based on Figure 5, it can be seen that the best model in the PM10 data 

at AMS1 is GSTARMA-OLS ([4]1, [3,7]1) using uniform weights. While in AMS2, it is known that the best 

model is GSTARMA-SUR ([4]1, [3,7]1) with uniform weights. In AMS3, the best model that can be applied is 

GSTARMA-SUR([4]1, [3,7]1) with inverse distance weight. Thus, the equation GSTARMA to model PM10 

data in the three AMS as in Table 2. 
Table 2. The Best GSTARMA Model for Modeling PM10 Data at AMS1, AMS2, and AMS3 

AMS Model Weights Model equation 

1 
GSTARMA-

OLS([4]1,[3,7]1) 
Uniform 

(1) (1) (2) (3) (1) (2)
4 4 4 3 3

(3) (1) (2) (3)
7 7 73

0,076 0,014 0,014 0,099 0,110

0,110 0,185 0,077 0,077

t t t t t t

t t tt

Y Y Y Y a a

a a a a

    

  

      

  

 

2 
GSTARMA-

SUR([4]1,[3,7]1) 
Uniform 

(2) (1) (2) (3) (1) (2)
4 4 4 3 3

(3) (1) (2) (3)
7 7 73

0,021 0,146 0,021 0,021 0,070

0,021 0,003 0,005 0,003

t t t t t t

t t tt

Y Y Y Y a a

a a a a

    

  

      

  

 

3 
GSTARMA-

SUR([4]1,[3,7]1) 

Inverse 

distance 

(3) (1) (2) (3) (1) (2)
4 4 4 3 3

(3) (1) (2) (3)
7 7 73

0,118 0,060 0,072 0,214 0,109

0,536 0,116 0,059 0,040

t t t t t t

t t tt

Y Y Y Y a a

a a a a

    

  

      

  

 

The GSTARMA model equation in Table 2 shows that PM10 data on AMS1, AMS2, and AMS3 are affected 

by events 3, 4, and 7 days before at the same location and different locations. 
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Figure 5. RMSE Value from PM10 Testing Data at AMS1, AMS2, and AMS3 using GSTAR and GSTARMA Model 

In general, the RMSE value in Figure 5 shows that the best model for each AMS can predict well for the next 

2 days. Based on the smallest RMSE value in each AMS, it can be concluded that the GSTARMA model 

tends to be better than the GSTAR model to model PM10 data in Surabaya. It is shown that the development 

of more sophisticated forecasting models, in this research that the development of GSTAR into GSTARMA, 

can provide better accuracy values for the model. These findings are in line with the results of the M4-

Competition, where the hybrid (complex) forecasting models tend to be better than individual forecasting 

models [19]. 

4. CONCLUSION 

This work model the PM10 data in Surabaya from three stations namely AMS1, AMS2, and AMS3. The 

models used are GSTAR and GSTARMA with estimation parameters method using OLS and SUR. The 

weights matrix used in this research are uniform and inverse distances weights. Based on the smallest RMSE 

value it can be concluded that the best model for PM10 data measured in AMS1 is GSTARMA-

OLS([4]1,[3,7]1) using uniform weights, the best model in AMS2 is GSTARMA-SUR([4]1,[3,7]1) with 

uniform weights, and the best model in AMS3 is GSTARMA-SUR([4]1,[3,7]1) with inverse distance weights. 

Thus, it can be concluded that the GSTARMA model outperform the GSTAR model to model the PM10 data 

in Surabaya. 
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