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ABSTRACT 

Bayesian estimation in the mixture models under Type – I censored samples have been done by several authors. In this paper the 
Bayesian estimation of the parameters of the mixture of power function distribution under Type – II censoring is considered. The 

estimation is carried out using uniform priors and Jeffrey’s priors for the parameters of the model under K – loss function and 
Precautionary loss function. The posterior risk and the root mean square error of the estimators are also obtained and to study the 

performance of these estimators a simulation study is conducted. 
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RESUMEN 

La estimación Bayesiana bajo modelos mezclados del  Tipo – I  de muestras censuradas han sido tratados por varios autores. En 

este paper tal estimación  Bayesiana de  los parámetros de la función de potencia bajo el Tipo-II de censura es considerado. La 

estimación es llevada a cabo  usando como a-prioris la Uniformes y la de Jeffrey para los  parámetros del modelo bajo  funciones 

de pérdidas  K  y Precaucionaría. El riesgo a posteriori y la raíz cuadrada de los estimadores también son  obtenidos y se estudia 

el desempeño de estos  estimadores en un estudio de  simulación desarrollado. 

 

PALABRAS CLAVE: función K – pérdida, función de pérdida Precaucionaría, prior Uniforme, prior de  Jeffrey,  distribución 

de la función de potencia , censura tipo – II. 

1. INTRODUCTION 

 

Censoring is used in studies which requires conducting the life testing experiments and survival analysis. 

There are two primary censoring schemes apart from the various types of censoring schemes. In an 

experiment if we terminate the experiment at a predetermined time then this type of censoring scheme is 

known as time censoring scheme or Type – I censoring. If the experiment is terminated as soon as the 

predetermined number of failures are observed then such scheme is known as failure censoring scheme or 

Type – II censoring.  

The analysis of life testing or survival data is done by using different statistical models like Power function, 

Rayleigh, Weibull, Exponential, etc. Sometimes the failure of object occur due to more than one reason. for 

e.g. Death of a patient may occur due to high blood pressure or failure of kidney. The mixture model is used 

in such situations. These mixture models comprises of two or more subpopulations which are known as 

components of the mixture model. Here, the value of the observation may relate it to the     sub population 

with proportion   .                  and    
 
      where    no. of subpopulations. Engineering, 

Medicine, Agriculture and many more fields have vast applications of such mixture distribution. 

To analyse crab morphometry data, a statistical model based on finite mixtures of distributions was first 

introduced by Pearson (1894). Ahsanullah and Kabir (1974) have described characterisation of the power 

function distribution and Meniconi and Barry (1996) have used power function distribution as a lifetime 

model for electrical component reliability where as Saleem et al (2010) have considered estimation of 
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parameters of the mixture of power function distributions under complete and type – I censored sample.  

Mendehall and Hader (1958) considered a mixture of exponential life time model. Saleem and Aslam (2008) 

have used Bayesian procedure for estimating the parameters of a mixture of Rayleigh distribution, Soliman 

(2006) considered  estimation for a mixture of Rayleigh distribution under progressive censoring and Sindhu 

et al (2014) have considered a mixture distribution of Rayleigh lifetime model to analyse the data under 

doubly censoring scheme. Kazmi et al (2012)  have used Bayesian estimation for a mixture of Maxwell 

distribution under type-I censoring scheme. Very few works are available in the area of estimation of mixture 

model of the power function distribution under Bayesian setup. 

In this paper we have considered a Bayesian estimation for a mixture of two power function distributions 

based on type – II censored sample. Uniform prior as well as Jeffrey’s Prior are used for the parameters 

          and uniform prior for proportion   of the mixture model. Bayes estimates are obtained for the 

parameters, considering  K – loss function and precautionary loss function. A comparison is done between the 

efficiency of the Bayes estimators obtained under uniform prior and Jeffrey’s prior using simulation. Some 

interesting conclusions are derived from the simulation results. 

2. MIXTURE MODEL 

 

The two - component mixture model for power function distribution is defined as follows:              
         ) 

where           

           
                                

            

(2.1) 

The distribution function of the     component of two - component mixture model for power function 

distribution is  

           (2.2) 

Here       are unknown parameters of the power function distributions and   is unknown mixing proportion 

with mixing weight      . 

Let us suppose that if   units are put on a test and the test is terminated as soon as the     failure is observed. 

As per the mixture model object may fail due to cause 1 or cause 2. The failed object can easily be identified 

whether it is from sub population 1 (which failed due to cause 1) or sub population 2 (which failed due to 

cause 2). 

Thus depending upon the cause of failure, we can identify the number of failures    due to cause 1 and    due 

to cause 2 from the   observed failures. The remaining       objects are censored which provide no 

information about the sub population and survive beyond the time     , the observed time of the     failure. 

The mixture model must be identifiable to produce precision inferences. In our model we have only shape 

parameters    and   . The model becomes identifiable and we can use it for analysis. 

The general form of likelihood function for the two – component mixture distribution under type – II 

censoring without replacement is given by: 

                         

  

   

                

  

   

          
     (2.3) 

where     = failure time of the     unit belonging to the     subpopulation and    denotes the     failure time 

observed from the   units on the test,                              

Putting the probability density function and cumulative distribution function of power function distribution 

from (2.1) and (2.2) in (2.3), the likelihood function reduces to, 

                        
    

  

   

               
    

  

   

            
           

        (2.4) 
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Simplifying the above equation, we can write it as 

             
   

 
  

 

 
 

 

   

           

   

   

          
    

                 
 

   

           
 

  

 

  

   

     

 

             
 

   

       
 

  

 

  

   

     
        

  
     

        
  
    

(2.5) 

where   is constant depending on            . 

Consider the uniform prior for the parameters   ,    and   given as: 

          
                                                                                where              
                                                                                 where          

 

          (2.6) 
          (2.7) 
          (2.8) 

 Using the likelihood function given in (2.5) and prior distributions stated in (2.6), (2.7) and (2.8), the joint 

distribution of the parameters and sample becomes, 
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where   is constant depending on             

The marginal distribution of   can be derived from the joint distribution (2.9) as, 
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Hence the joint posterior distribution of       and   can be obtained using (2.9) and (2.10) as, 
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The marginal posterior distribution of          ) and   can be determined by integrating with respect to 

other parameters. Thus the marginal posterior distribution of prior    is defined as: 
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(2.14) 

Similarly we have the marginal posterior distributions of    and   as given below: 

          

         
   

   
       

 
    

 
    

         
       

  
                          

            
 

    
 
  

    
       

  
     

       

  
                         

   
    

 (2.15) 

         

         
   

   
       

 
    

 
                          

  
     

       

  
      

            
 

    
 
  

    
       

  
     

       

  
                         

   
    

 (2.16) 

Consider the Jeffrey’s prior for the parameters   ,    and   given as: 

       
 

  

  

       
 

  

  

where             

         
where       

         
(2.17)  
(2.18) 
 
 
(2.19) 

Using the likelihood function given in (2.5) and prior distributions stated in (2.17), (2.18) and (2.19), the joint 

distribution of the parameters and sample becomes, 
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where   is constant depending on             and         
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The marginal distribution of   can be derived from the joint distribution (2.20) as, 
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Hence the joint posterior distribution of       and   can be obtained using (2.20) and (2.21) as, 

              
            

     
    (2.22) 
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    (2.23) 

The marginal posterior distribution of          ) and   can be determined by integrating with respect to 

other parameters. Thus the marginal posterior distribution of prior    is defined as: 
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Similarly we have the marginal posterior distributions of    and   as given below: 
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3. BAYES ESTIMATION 

 

In Bayesian estimation theory a loss function gauges the difference of the estimate    from the parameter  . 

There is no fixed set of procedure to select an appropriate loss function. The performance of different Bayes 

estimators can be compared in terms of posterior risks associated with each estimator. The posterior risk is 

defined to be the expected value of a loss function. In this paper, we have considered a couple of loss 

functions for posterior estimation and the description about the loss functions are as follows: 

K – loss function (KLF): The K – loss function was proposed by Wasan (1970), is defined as 

                     . 

The Bayes estimate and the posterior risk are defined as  

                                                                                                                                           (3.1) 

and                                                                                                                              (3.2)  

respectively. 

Precautionary loss function (PLF): The Precautionary loss function was proposed by Norstrom (1996), is 

defined as                      .  

The Bayes estimate and the posterior risk are defined as 
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and                  
 

                                                                                                                    (3.4)       

respectively. 

To estimate the value of the parameter   and its posterior risk using the K - loss function and precautionary 

loss function using uniform prior, we will require the posterior expectations like         ,    
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 (3.5) 

   
 

  

    

            
 

    
 
  

    
     
  

  
 
       

  
                         

   
     

            
 

    
 
  

    
       

  
     

       

  
                         

   
    

 (3.6) 

     
       

            
 

    
 
  

    
       

  
     

       

  
                         

   
     

            
 

    
 
  

    
       

  
     

       

  
                         

   
    

 (3.7) 

Similarly for the parameters    and   
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 (3.13) 

Bayes estimate     and posterior risk        of parameter    is determined under K – loss function as: 
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Using equation (3.5) and (3.6) in equation (3.14) and (3.15) we get the Bayes estimate and its posterior risk 

for parameter    
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 (3.17) 

Similarly using equation (3.8) and (3.9) we get the Bayes estimate and its posterior risk for parameter    

under K – loss function as: 
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 (3.19) 

Similarly using equation (3.11) and (3.12) we get the Bayes estimate and its posterior risk for parameter   

under K – loss function as: 
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 (3.21) 

Bayes estimate     and posterior risk        of parameter    is determined under precautionary loss function 

as: 
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Using equation (3.5) and (3.7) in equation (3.22) and (3.23) we get the Bayes estimate and its posterior risk 

for parameter    
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Similarly using equation (3.8) and (3.10) we get the Bayes estimate and its posterior risk for parameter    

under precautionary loss function as: 
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Similarly using equation (3.11) and (3.13) we get the Bayes estimate and its posterior risk for parameter   

under precautionary loss function as: 
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To estimate the value of the parameter   and its posterior risk using the K - loss function and precautionary 

loss function using Jeffrey’s prior, we will require the posterior expectations like         ,    
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Similarly for the parameters    and   

           

            
 

    
 
  

    
     
  

  
 
       

  
                         

   
     

            
 

    
 
  

    
     
  

  
 
     
  

  
                     

   
    

 (3.33) 

   
 

  

     

            
 

    
 
  

    
     
  

  
 
       

  
                         

   
     

            
 

    
 
  

    
     
  

  
 
     
  

  
                     

   
    

 (3.34) 

     
      

            
 

    
 
  

    
     
  

  
 
       

  
                         

   
     

            
 

    
 
  

    
     
  

  
 
     
  

  
                     

   
    

 (3.35) 

         

            
 

    
 
  

    
     
  

  
 
     
  

  
    

                        

            
 

    
 
  

    
     
  

  
 
     
  

  
                     

   
    

 (3.36) 

   
 

 
     

            
 

    
 
  

    
     
  

  
 
     
  

  
    

                      

            
 

    
 
  

    
     
  

  
 
     
  

  
                     

   
    

 (3.37) 

 

          

            
 

    
 
  

    
     
  

  
 
     
  

  
    

                        

            
 

    
 
  

    
     
  

  
 
     
  

  
                     

   
    

 (3.38) 

We derive the Bayes estimate     and posterior risk        of parameter    under K – loss function using 

equation (3.30) and (3.31) in equation (3.14) and (3.15) as: 
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Similarly using equation (3.33) and (3.34) we get the Bayes estimate and its posterior risk for parameter    

under K – loss function as: 
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Similarly using equation (3.36) and (3.37) we get the Bayes estimate and its posterior risk for parameter   

under K – loss function as: 

     

            
 

    
 
  

    
     
  

  
 
     
  

  
    

                       

            
 

    
 
  

    
     
  

  
 
     
  

  
    

                     

 

 
 

 (3.43) 

        

 
 
 
 
 
 
 
 
           

   

 
   

 

 
 

 

   

 
     

  
  

 
     

  
  

 

   

   

                       

          
   

 
   

 

 
 

 

   

 
     

  
  

 
     

  
  

 

   

   

                     

          
   

 
   

 

 
 

 

   

 
     

  
  

 
     

  
  

                     

   

   

 
 
 
 
 
 
 
 
 
 

 (3.44) 

 

We derive the Bayes estimate     and posterior risk        of parameter    under precautionary loss function 

using equation (3.30) and (3.32) in equation (3.22) and (3.23) as: 
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Similarly using equation (3.33) and (3.35) we get the Bayes estimate and its posterior risk for parameter    

under precautionary loss function as: 
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Similarly using equation (3.36) and (3.38) we get the Bayes estimate and its posterior risk for parameter   

under precautionary loss function as: 
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4. SIMULATION STUDY 

 

A simulation study was carried out to check the performance of Bayes estimators obtained in Section 3 using 

R software (v. 3.4). To simulate samples from two - component mixture of power function distributions we 

have used the following algorithm. 

a. A uniform         random number     is generated and if     (mixture proportion 

parameter) then draw an observation from the 1
st
 sub population       having parameter   , 

otherwise from the 2
nd

 sub population       having parameter   . Here we have used two sets 

for (       ) as               and              . 

b. Repeat the above step   times to generate a sample of size   from the mixture distribution. Here 

the value of   is taken as (30, 60). 

c. Arrange the above generated   values in ascending order and take the 1
st
   values as observed 

values and       are considered as censored values. 

d. Identify the observations belongs to 1
st
 sub population, say    and 2

nd
 sub population, say   . 

e. Calculate Bayes estimates of parameters  ,    and    using the respective formulas from section 

3. 

f. Repeat the above steps        times, thus we have     ,      and    ,              . 

g. Calculate Posterior Risk (PR) and Bayes estimates of   ,   , and   by taking average of the 

5000 values in step f. 

h. Calculate Root Mean Square Error, using the formula, 

       
    

      
   

 
 

The outputs obtained from the simulations are presented in Table 1 to Table 4. Table – 1: Bayes estimates, 

posterior risk and RMSE for Uniform Prior with values of 

                          and             under the K loss function are given below: 

KLF 

  α1 α2 p n 
10% Censoring 20% Censoring 

α1 α2 p α1 α2 p 

Estimate 

0.5 0.9 0.4 

30 

0.5712 0.9763 0.3971 0.5746 0.9671 0.4007 

PR 4.98E-39 3.80E-40 4.53E-39 2.41E-40 2.03E-41 2.24E-40 

RMSE 0.2070 0.2648 0.0885 0.2104 0.2641 0.0926 

Estimate 

60 

0.5354 0.9338 0.3991 0.5398 0.9387 0.3944 

PR 1.65E-91 5.80E-92 1.23E-91 1.27E-93 5.39E-94 9.65E-94 

RMSE 0.1236 0.1678 0.0635 0.1294 0.1977 0.0711 

Estimate 1.5 1.2 0.6 30 1.6119 1.3759 0.5806 1.5942 1.3767 0.5765 
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PR 5.60E-23 1.29E-22 2.16E-23 8.34E-23 9.93E-22 1.08E-23 

RMSE 0.4224 0.5116 0.0907 0.4146 0.5228 0.0947 

Estimate 

60 

1.5574 1.2763 0.5907 1.5533 1.2810 0.5829 

PR 1.49E-56 6.90E-56 3.23E-57 2.11E-61 5.39E-61 7.76E-62 

RMSE 0.2785 0.2892 0.0653 0.2832 0.3038 0.0741 

 

Table – 2: Bayes estimates, posterior risk and RMSE for Uniform Prior with values of                 
          and             under the precautionary loss function are given below: 

 

PLF 

  α1 α2 p n 
10% Censoring 20% Censoring 

α1 α2 p α1 α2 p 

Estimate 

0.5 0.9 0.4 

30 

0.6224 1.0324 0.4173 0.6285 1.0254 0.4231 

PR 4.99E-02 5.52E-02 1.93E-02 5.24E-02 5.72E-02 2.13E-02 

RMSE 0.2474 0.2994 0.0873 0.2534 0.2980 0.0924 

Estimate 

60 

0.5590 0.9606 0.4096 0.5642 0.9619 0.4281 

PR 2.33E-02 2.66E-02 1.03E-02 2.43E-02 2.57E-02 3.44E-02 

RMSE 0.1372 0.1796 0.0631 0.1434 0.1849 0.1019 

Estimate 

1.5 1.2 0.6 

30 

1.7056 1.4979 0.5949 1.6914 1.5050 0.5928 

PR 9.22E-02 1.19E-01 1.36E-02 9.54E-02 1.24E-01 1.55E-02 

RMSE 0.4785 0.6105 0.0857 0.4696 0.6263 0.0885 

Estimate 

60 

1.6024 1.3326 0.5980 1.5988 1.3396 0.6067 

PR 4.47E-02 5.57E-02 7.12E-03 4.55E-02 5.82E-02 2.14E-02 

RMSE 0.2984 0.3205 0.0635 0.3005 0.3330 0.0874 

 

Table – 3: Bayes estimates, posterior risk and RMSE for Jeffrey’s Prior with values of                 
          and             under the K loss function are given below: 

KLF 

  α1 α2 p n 
10% Censoring 20% Censoring 

α1 α2 p α1 α2 p 

Estimate 

0.5 0.9 0.4 

30 

0.5214 0.9226 0.3966 0.5234 0.9139 0.3995 

PR 1.11E-38 4.21E-40 5.05E-39 5.83E-40 2.35E-41 2.73E-40 

RMSE 0.1769 0.2405 0.0890 0.1795 0.2422 0.0937 

Estimate 

60 

0.5125 0.9082 0.3988 0.5176 0.9191 0.3925 

PR 1.99E-91 6.47E-92 1.39E-91 1.22E-93 4.95E-94 8.75E-94 

RMSE 0.1141 0.1601 0.0636 0.1243 0.2446 0.0722 

Estimate 

1.5 1.2 0.6 
30 

1.5224 1.2571 0.5812 1.5058 1.2550 0.5778 

PR 1.39E-24 1.70E-23 3.52E-25 1.56E-23 3.61E-22 1.83E-24 

RMSE 0.3848 0.4361 0.0911 0.3815 0.4465 0.0957 

Estimate 60 1.5147 1.2218 0.5911 1.5162 1.2280 0.5817 
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PR 1.13E-57 5.70E-57 2.37E-58 1.78E-62 5.20E-62 6.01E-63 

RMSE 0.2657 0.2680 0.0655 0.2836 0.2885 0.0774 

 

Table – 4: Bayes estimates, posterior risk and RMSE for Jeffrey’s Prior with values of                 
          and             under the precautionary loss function are given below: 

PLF 

  α1 α2 p n 
10% Censoring 20% Censoring 

α1 α2 p α1 α2 p 

Estimate 

0.5 0.9 0.4 

30 

0.5728 0.9789 0.4168 0.5780 0.9725 0.4220 

PR 5.00E-02 5.53E-02 1.93E-02 5.28E-02 5.74E-02 2.13E-02 

RMSE 0.2082 0.2660 0.0877 0.2131 0.2663 0.0932 

Estimate 

60 

0.5361 0.9351 0.4093 0.5417 0.9383 0.4312 

PR 2.33E-02 2.66E-02 1.03E-02 2.41E-02 2.50E-02 3.99E-02 

RMSE 0.1241 0.1682 0.0633 0.1307 0.1758 0.1139 

Estimate 

1.5 1.2 0.6 

30 

1.6164 1.3799 0.5954 1.6036 1.3851 0.5940 

PR 9.23E-02 1.19E-01 1.36E-02 9.58E-02 1.26E-01 1.55E-02 

RMSE 0.4244 0.5146 0.0862 0.4186 0.5291 0.0896 

Estimate 

60 

1.5598 1.2783 0.5983 1.5594 1.2857 0.6133 

PR 4.47E-02 5.58E-02 7.12E-03 4.43E-02 5.78E-02 2.89E-02 

RMSE 0.2793 0.2903 0.0637 0.2853 0.3046 0.1130 

 

 

5. CONCLUSION 

From  Table 1 to 4 of  uniform prior and Jeffrey’s prior we observe the following conclusions: 

i. For any set of selected value of the parameters (       ) the values of PR and RMSE remain almost 

same in 10% as well as 20% censoring. 

ii. As   increases RMSE and PR decreases in case of KLF & PLF for 10% and 20% censoring both. 

iii. The values of PR and RMSE remains smaller in case of KLF compared to the results in PLF for any 

sample size and censoring (10% & 20%). 

iv. The estimates of the parameters remain close to the actual values in case of KLF compared to PLF 

for sample for  , 10% and 20% censoring. 

v. The estimates of the parameters remain close to the actual values in case of Jeffrey’s prior compared 

to the Uniform prior for sample for  , 10% and 20% censoring. 

RECEIVED: JANUARY, 2020. 

REVISED: APRIL, 2020 

REFERENCES 

 

[1] AHSANULLAH, M., and A.B.M. LUTFUL KABIR (1974): A characterization of the power function 

distribution. Canad. J. Statist., 2, 95–98. 

[2] KAZMI S.M.A., M. ASLAM, and S. ALI (2012): On the Bayesian estimation for two component mixture 

of maxwell distribution, assuming type I censored data. International Journal of Applied Science and 

Technology, 2, 197 – 218. 

[3] MENDENHALL, W. and R.A. HADER (1958): Estimation of parameters of mixed exponentially 

distributed failure time distributions from censored life test data. Biometrika, 45, 504–520. 



 
 

922 

[4] MENICONI, M. and D.M. BARRY (1996): The power function distribution: A useful and simple 

distribution to assess electrical component reliability. Microelectron. Reliab., 36, 1207–12. 

[5] NORSTROM J. (1996): The use of precautionary loss functions in risk analysis.  IEEE Transactions on 

Reliability, 45, 400-403. 

[6] PEARSON, K. (1894): Contributions to the mathematical theory of evolution. Philosophical 

Transactions of the Royal Society of London – A, 185, 71–110. 

[7] Saleem, M. and M. Aslam (2008): On prior selection for the mixture of Rayleigh distribution using 

predictive Intervals. Pakistan J. Statist., 24, 21-35. 

[8] SALEEM, M., M. ASLAM, and P. ECONOMOU (2010): On the Bayesian analysis of the mixture of 

Power function distribution using the complete and the censored sample. Journal of Applied Statistics, 37, 

25-40. 

[9] SINDHU T., N. FEROZE and M. ASLAM (2014): Bayesian Estimation of the Parameters of Two - 

Component Mixture of Rayleigh Distribution under Doubly Censoring. Journal of Modern Applied 

Statistical Methods, 13, 259-286. 

[10] SOLIMAN, A. A. (2006): Estimators for the finite mixture of Rayleigh model based on progressively 

censored data. Communications in Statistics - Theory and Methods, 35, 803-820. 

[11] WASAN, M. (1970): Parametric Estimation. McGraw-Hill Book Company, New York. 

 

 

 


