

REVISTA INVESTIGACION OPERACIONAL VOL. 41, NO. 6, 882-892, 2020

MODELING AND ANALYSIS OF FAULT DETECTION AND

CORRECTION PROCESS FOR MULTI RELEASE

SOFTWARE SYSTEM
Adarsh Anand*, Deepika*

1
, Jagvinder Singh** and Ompal Singh*

*Department of Operational Research, University of Delhi, Delhi 110007, India

**University School of Management and Entrepreneurship, DTU, India

ABSTRACT

With ever changing market demands, software organizations in today’s scenario have to improve regularly by coming up

with new functionality and gain over their rival counterpart. For software developers, fault detection and fault correction are
important activities making the software qualitative. In the present framework, we have used convolution theory for analysis

of fault detection and correction processes. Different types of distributions have been inculcated in the modeling. The

proposed reliability growth models for software are validated on real life software data set. Further, we have also discussed
normalized criteria distance method, to rank and choose superlative release from between four releases based on a set of

criteria.

KEYWORDS: Distribution function, Fault detection process (FDP), Fault correction process (FCP), Multi Release,

Normalized criteria distance method (NCDM), Software reliability growth models (SRGMs).

MSC: 12H20, 62EXX, 62H10

RESUMEN

Con las siempre cambiantes demandas del mercado, las organizaciones de software en el actual escenario tienen que

mejorar regularmente actualizándolos con las nuevas funcionalidades y ganarle a sus contrapartes rivales. Para los
desarrolladores de software, la detección de fallas y su corrección son importantes actividades para mejorar la calidad del

software. En el presente marco de trabajo, hemos usado la teoría de convolución para el análisis de los procesos de

detección de fallas y de corrección. Diferentes tipos de distribuciones han sido inculcados en el modelado. La propuesta de
modelo para el incremento de la fiabilidad modelos para softwares son validados usando conjuntos de datos de la vida real.

Además, también discutimos criterios normalizados basados en métodos de distancia para rankear las selecciones de

aprobación superlativos entre 4 aprobaciones basadas en un conjunto de criterios.

PALABRAS CLAVE: Función de distribución, procesos de detección de fallos (FDP), Procesos de corrección de fallos

(FCP), Multi aprobación , Criterios normalizados de distancia (NCDM), Criterios del crecimiento de la fiabilidad de
software (SRGMs).

1. INTRODUCTION

Current Market surroundings do not allow the developer to spend too much time to build the software. “Due

to the rapid changing technology, the fact that software might get obsolete also dread the developers.

Developers prefer to follow a multi release policy by introducing multiple upgraded versions of software

instead of delivering the entire product at one go. During the lifespan of large software systems, iterative

development procedure is commonly adopted with continuously incremental software versions released to the

market (Kapur et. al 2011a). Without the loss of generality, a specific iterative software development scenario

is considered for our current study, where a software development team develops, tests and releases software

version by version.” Continuous up- gradation has become a requirement for the industries. “The term

upgrade refers to the replacement of a product with a modified version of the same product”. In one

progressive cycle, software companies do not endeavour to convey an absolute and ideal product due to

resource restriction and time. They enhance the performance of successive system by eliminating the errors

from existing software. In present time, firms are re-releasing their software by improving the existing

functionality adding new features and so on. “One such example is versions of Android like: Alpha (1.0),

Beta (1.1), Cupcake (1.5), Donut (1.6), Eclair (2.0–2.1), Froyo (2.2–2.2.3), Ginger bread (2.3–2.3.7), Honey

deepika.sre@gmail.com

 883

comb (3.0–3.2.6), Ice Cream Sandwich (4.0–4.0.4), Jelly Bean (4.1–4.3.1), Kit Kat (4.4–4.4.4), Lollipop (5.0–

5.0.1), Marshmallow (6.0 - 6.0.1), Nougat (7.0 -7.1.2) and Oreo (8.0-8.1)”(Anand et al., 2015).

Thus, “up-gradation is a process of adding new features, defects fixes and patches to an application in the

form of installer or additions or patch. It is essential to know the content of faults in the software before

debugging them”. Kapur et al. (2010b) gave model related to multiple releases, considering that cumulative

faults in each generation depend on all previous releases and assumed that fault is removed with certainty.

Later, Kapur et al. (2011c) has given a multi release software reliability growth model in which they

identified the faults left in the software when it is in operational phase during the testing of the new code

incorporating that the software includes different types of faults. Singh et al. (2012) has delivered that overall

fault removal of the new release depends on the reported faults from the just previous release of the software

and on the faults generated due to the addition of some new functionality to the existing software system.

They developed two SRGMs using Logistic distribution and Normal distribution. Anand et al. (2014)

incorporated the generalised framework for faults in new release due to up-gradation of the features and

undetected faults from operational phase of preceding releases and different distributions have used for fault

removal phenomenon”. Researchers have also worked on concept of testing effort, imperfect debugging,

change point, uncertainty and release time problem, Multi attribute utility theory (Kapur et. al 2010a, 2010b;

Singh et. al 2011; Kapur et. al 2015). Later, Anand et al. (2015) proposed “fault severity based multi up-

gradation modeling considering testing and operational phase”. These proposed models have the postulation

that the overall fault removal of the new release depends on the reported bugs from the just previous release

of the software.

As testing progresses, the dormant bug is diagnosed, terminated and the number of faults remaining in the

software system thus gradually decreases. One of the main objectives of software testing is detection and

correction of faults before the release of the software in the market. Generally, whenever a failure is identified

the fault correction team requires a period of time to locate the fault and modify some codes accordingly to

remove them. Thus, the time lag between detection and correction is a common experience in software testing

(Kapur et al., 2011b). This time lag is the time delay between the fault detection and correction processes. The

removal time of a fault depends on various factors such as complexity of the faults, number of the detected

faults etc. Some faults which are detected but not corrected still remain in the software. These latent faults are

caused by the correction lag and reflect the relationship between fault detection and correction processes

(Kapur et al., 2011a).

Various SRGMs have been proposed to calculate approximately essential manner such as leftover faults,

failure time etc. Most of these SRGMs are based on NHPP (Goel et al., 1979, Musa et al., 1987, Yamada et

al., 2003, Pham 2006, Kapur et al., 2010a, Kapur et al., 2011a) and are useful to illustrate behaviour of

software testing method that includes FDP & FCP. Each fault correction process is connected to a detection

process as fault can only be corrected if they are detected. The testing process as a two stage process in which

all observed/detected faults are corrected after a constant delay of time has been discussed by Schneidewind

(1975) and Yamada et al. (1984). Lo and Huang (2006) have proposed a general framework where some

existing NHPP models are re-evaluated from the viewpoint of correction process. Further Xie et al. (2007)

emphasized on fault correction process described by delayed detection process with a random or deterministic

delay. Therefore, a convolution methodology with different distributions (i.e Exponential and Erlang

distribution) can be used in SRGMs which cater to softwares coming in multi versions.

Rest of the manuscript is prearranged as follow: Firstly, assumptions about SRGMs and notations have been

comprised. Then we have discussed the modeling framework. The successive sections enlighten us about the

multi release modeling with convolution probability function and parameter estimates in each release of all

SRGMs. Further, a segment describes the ranks by normalized criteria distance approach (Pham, 2014) of all

SRGMs. At last, conclusion is followed by references.

2. ASSUMPTION

http://en.wikipedia.org/wiki/Android_4.0
http://en.wikipedia.org/wiki/Android_Jelly_Bean
http://en.wikipedia.org/wiki/Android_Lollipop

 884

Some fundamental presumptions of the framework are as given below:

a) The FDP and FCP are based on NHPP.

b) At any time, the amount of bugs detected is directly proportional to leftover quantity of bugs.

c) There is mutual independence between the faults.

3. NOTATIONS

()m t

Expected number of faults removed by time t

()f t Probability Density Function (PDF) of fault removal process

()diF t Cumulative Distribution Function (CDF) for time up to‘t’ for detection

process used in
thi release

()ciF t Cumulative Distribution Function (CDF) for time up to‘t’ for correction

process used in
thi release

1it  Time for
thi release (1 4)i to

ia Fault count for
thi release (1 4)i to

ib Constant parameter for
thi release (i=1 to 4)

 Steiltjes convolution

4. GENERAL FRAMEWORK FOR MULTI-RELEASE MODEL

In dynamic scenario, primary release of the piece is foremost foundation of firms so company have to pay

more attention on it. Testing team has to detect and remove faults as much as possible and minimize the risk

of errors in future. After first release company has to plan for next version with new update. They will test

and analyze the reported bugs of just previous release during testing phase of the current release (Kapur et. al

2011a; Singh et. al 2012).

4.1. First Release (R1)

Let us presume that first version of the software is released at time 1t t . It is a fact that correcting all the

bugs during R1 of the software is practically infeasible i.e. some of the faults of the previous release have to

be removed in the successive releases. Modeling of first release for two stage detection-correction process is

given as:

m
1
(t) = a

1
[(F

d 1
Ä F

c1
)(t)] ;0 £ t < t

1
 (1)

4.2. Second Release (R2)

Considering the time for introduction of R2 is 2t and testing interval for second release  1 2,t t will be

operational phase for just previous release. In this period when there are two versions of the software

1 1 1 1[1 ()()]d ca F F t  , the leftover fault content of the first version interacts with new debugging rate. As a

result of these interactions a fraction of faults which were not removed during the testing of first version of

the product gets removed (Anand et al., 2014). In accumulation, fault are generated due to the enhancement of

the features are also removed during the testing with new detection-correction proportion i.e.

2 2 1()()d cF F t t  .

Hence mathematical expression of R2 during  1 2,t t can be structured as:

2 2 2 2 1 1 1 1 1 2 2 1() [()()] [1 (()())][()()]d c d c d cm t a F F t t a F F t F F t t        (2)

 885

 = 2 1 1 1 1 2 2 1[{1 ()()}][()()]d c d ca a F F t F F t t     ; 1 2t t t 

4.3. Third Release (R3)

Correspondingly, for (R3), we assume faults generated in third release due to the new lines of code and new

functionalities and remaining number of faults from the just previous (R2) release. Time for introduction of

third release R3 is 3t and  2 3,t t is the testing period for third release. In this interval,

2 2 2 2 1[1 ()()]d ca F F t t   the left over faults of second edition interacts with changed fault detection-

correction rate and faults related to new functionalities are corrected with new detection-correction proportion

3 3 2()()d cF F t t  . The mathematical expression for R3 is as follow:

3 3 3 3 2 2 2 2 2 1 3 3 2() [()()] [1 {()()}][()()]d c d c d cm t a F F t t a F F t t F F t t         (3)

 = 3 2 2 2 2 1 3 3 2[1 {()()}] [()()]d c d ca a F F t t F F t t      ;
2 3t t t 

4.4. Fourth Release (R4)

Similarly, mathematical form for (R4) can be written as:

4 4 4 4 3 3 3 3 3 2 4 4 3() [()()] [1 (()())][)()]d c d c d cm t a F F t t a F F t t F F t t         (4)

 = 4 3 3 3 3 2 4 4 3[1 {()()}] [)()]d c d ca a F F t t F F t t      ;
3 4t t t 

Similarly we can express the mathematical equation for (1)thn and
thn release.

1 1 (1) (1) 2

2 (2) (2) 2 3 (1) (1) 2

() [()()]

[1 (()())][)()]

n n d n c n n

n d n c n n n d n c n n

m t a F F t t

a F F t t F F t t

    

       

  

      (5)

1 2 (2) (2) 2 3 (1) (1) (2)[1 {()()}] [)()]n n d n c n n n d n c n na a F F t t F F t t        
        

 ;
2 1n nt t t  

and

1

1 (1) (1) 1 2 1

() [()()]

[1 (()())][)()]

n n dn cn n

n d n c n n n dn cn n

m t a F F t t

a F F t t F F t t



     

  

      (6)

= 1 (1) (1) 1 2 1[1 {()()}] [)()]n n d n c n n n dn cn na a F F t t F F t t     
        ;

1n nt t t  

5. CONVOLUTION METHODOLOGY AS A TOOL FOR MODELING VARIOUS RELEASES

In this segment, we use convolution methodology for deriving the SRGMs with different distribution in each

release (release 1 to 4). To analyze the performance of complete software system joint distribution is very

useful. One of the most important concepts in Fourier theory is that of a convolution. Mathematically, a

Steiltjes Convolution is defined as the integral over all space of one function at z times another function at

w z . The integration is taken over the variable z typically from minus infinity to infinity over all the

dimensions. So the convolution is a function of a new variable w , as shown by following equations.

Convolution operation is commutative in nature (Randy, 2009).

() () () () ()
space

C w f z g z f z g w z dz    (7)

 886

This design gives us an idea about how we can think about the convolution, as giving a weighted sum of

shifted replica of one function: the weights are given by the function value of the second function at the shift

vector. In time horizon[0,]t , using the method of convolution probability function which is mathematically

represented as:

0

() () ()
t

F G t F t z g z dz   (8)

As a matter of fact, it is considered that exponential distribution has been taken for fault correction process

(with distinct rate for all the versions) but nature of detection process requires some discussion. Initially we

assume that it follows a constant pattern. But once, foremost version is released and when it is in its

operational phase then we are technically in testing phase for the successive version (i.e. Release-2 here). So

the new detection process shall follow what has been jointly calculated for earlier version of software. i.e. the

new detection process shall follow exponential pattern of debugging (obviously with different rates).

Likewise the resultant of second release acts as the new detection process during the testing phase of third

release and similarly the resultant of joint distribution from third release would be treated as detection process

during the testing of forth version of software.

Therefore, entire process can be summarized as follows:

5.1. Release-I

Assuming that FDP as a constant and FCP as exponential i.e. 1() 1()dF t t: and 1 1() exp()cF t b: using the

above equation (1) with convolution methodology, we have mathematical function for R1.

1

1 1 1 1

1 1

() [1 {1 ()()}]

where ()() (1)

d c

b t

d c

m t a F F t

F F t e


   

  

 (9)

5.2. Release-II

Using convolution methodology, we assume that FDP and FCP both are following exponential distribution

i.e. 2 2

2 2(() (1) () (1))
b t b t

d cF t e F t e
 

   and . Thus mathematical formulation for R2 is represented

in given eq. (10).

 2 2 1 1 1 2 2() [{1 ()()}][()()]d c d cm t a a F F t F F t     (10)

 where 2

2 2 2()() (1 (1))
b t

d cF F t b t e   

5.3. Release-III

In release 3, we assume that FDP follows Erlangian 2- stage distribution and FCP follows exponential

distribution i.e. 3 3

3 3 3() {1 (1) } () (1))
b t b t

d cF t b t e and F t e
 

     . With the concept of Convolution,

mathematical formation for third release can be structured as:

 3 3 2 2 2 3 3() [1 {()()}] [()()]d c d cm t a a F F t F F t     (11)

where 3

2 2

3
3 3 3()() (1 (1))

2!

b t

d c

b t
F F t b t e    

5.4. Release-IV

Similarly, for release-4, it is assuming that FDP follows Erlang 3-stage and FCP follows exponential

distribution i.e.

4 4

2 2

4
4 4 4() {1 (1) } and () {1 }

2!

b t b t

d c

b t
F t b t e F t e

 
      .

 887

 4 4 3 3 3 4 4() [1 {()()}] [()()]d c d cm t a a F F t F F t     (12)

where 4

2 2 3 3

4 4
4 4 4()() (1 (1))

2! 3!

b t

d c

b t b t
F F t b t e     

6. STATISTICAL ANALYSIS AND MODEL JUSTIFICATION

6.1. Data Explanation

The presentation of proposed model has been analysed by using real data. For the validation we have

employed data from a real software project. The project manager can type the “report” command in the MR

system and get the monthly report summary as shown in below Table-1. In the total epoch, data comprises of

16 months in which 592 faults has been detected in first release and 443 faults, 361 faults, 428 faults has been

detected in second, third and fourth release respectively (Sun, 2002).

Table 1: Monthly data of four software releases (Sun, 2002)

Time R1 R2 R3 R4

1 10 9 12 5

2 58 95 15 23

3 93 178 99 131

4 167 229 180 214

5 234 270 281 257

6 310 309 302 312

7 409 346 322 379

8 455 388 345 402

9 486 414 359 426

10 515 427 361 427

11 555 437

428

12 576 442

13 586 442

14 589 442

15 589 443

16 592

6.2. Performance Analysis

There are numerous techniques to estimate the parameters of SRGMs. The parameters of the proposed models

have been estimated via nonlinear regression using the data analysis software package known as SAS

(SAS/ETS User’s Guide, 2004). The parameter estimation and comparison criteria results for data set of the

models under consideration can be viewed through Table-2 and Table -3 respectively.

Table 2: Estimates of Model Parameters

Parameter R1 R2 R3 R4

ia 1030.71 411.05 388.54 432.18

ib 0.06 0.41 0.65 0.85

 888

Table 3: Comparison Criteria for proposed Models

Releases under consideration MSE Bias Variation RMSPE 2R

Release-I 2184.27 -9.45 47.27 48.2 0.95

Release-II 101.4 -0.63 10.4 10.42 0.99

Release-III 371.36 -3.55 19.96 20.27 0.98

Release-IV 156.02 -0.45 13.09 13.09 0.99

Figure 1: Curve of Goodness of fit

Figure 2: Curve of Goodness of fit

0

100

200

300

400

500

600

700

0 2 4 6 8 10 12 14 16 18

C
u

m
u

la
ti

ve
 n

o
. o

f
fa

u
lt

s

Time

Actual

Predicted

0

50

100

150

200

250

300

350

400

450

500

0 2 4 6 8 10 12 14 16

C
u

m
u

la
ti

ve
 n

o
. o

f
fa

u
lt

s

Time

Actual

Predicted

 889

Figure 3: Curve of Goodness of fit

Figure 4: Curve of Goodness of fit

Above shown graphs (figure-1 to 4) correspond to better fit for all the four releases on proposed SRGMs. As

it can be seen from Table-3, it is not clear that which is performing best among of the four releases. Thus,

there was the need for an approach to quantify proposed SRGM on the basis of some ranking approach for

four releases. To supplement, we have used normalized criteria approach for ranking the SRGMs on the basis

of five comparison attributes. Making use of Normalized Criteria Approach as described in Pham, (2014), the

appropriate ranking for the proposed SRGMs is obtained. The evaluated weights, their distance, thus obtained

are presented in Table-4.

7. NORMALIZED CRITERIA DISTANCE METHOD

In this segment, “we discuss a method called NCD, for ranking and selecting the best model from among

SRGMs based on a set of criteria taken all together with considerations of criteria weight” 1 2, d   .

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10

C
u

m
u

la
ti

ve
 n

o
. o

f
fa

u
lt

s

Time

Actual

Predicted

0

50

100

150

200

250

300

350

400

450

0 1 2 3 4 5 6 7 8 9 10 11 12

C
u

m
u

la
ti

ve
 n

o
. o

f
fa

u
lt

s

Time

Actual

Predicted

 890

Let  denotes the number of software reliability models with  criteria, and ij represents the criteria

value of ith model of jth criteria where i =1, 2,..., and j =1,2...., . The NCD value, kD , measures

the distance of the normalized criteria from the origin for kth model” (Pham, 2014)

2

1

1

kj

k j

j
ij

i

D











   
   
   
   
        




 ; 1,2,.........,k 

and  are overall digit of models and sum numeral of criteria, respectively, and j indicate weight of

the measure j where 1,2,...,j  .

So, “the smaller NCD value, kD , it represents the better rank as compare to higher NCD value. In proposed

modeling, we use four comparison criteria such as Mean Square Error, Bias, variation, Root Mean square

Prediction Error, to illustrate the NCD method.

Table 4: Model ranking

Model MSE BIAS Variation RMSPE Weights Distance Rank

R-I 0.60291729 0.45078225 0.27149705 0.27460426 0.39995 0.632416 4

R-II 0.00129933 0.00197812 0.01314197 0.0128336 0.007313 0.085518 1

R-III 0.01742751 0.06361505 0.04840776 0.0485647 0.044504 0.210959 3

R-IV 0.00307614 0.00101764 0.02081964 0.02025315 0.011292 0.106262 2

The above table clearly portrays that modeling for Release II (convolution of two exponential distributions)

has attained first rank on implementing the normalized criteria distance approach. Hence, out of the four

releases, Release-II performs much better as compared to other releases.

8. CONCLUSION

In delivering the high quality product reliability plays a pivotal role. Multi release of software has proven to

increment its reliability. In our proposed models, total fault elimination of recent release is evaluated on the

support of informative bugs of prior one. While modeling the successive releases of the software, we have

considered the interaction between the errors remaining in the just prior release and the present one. In this

paper, we have used detection-correction phenomenon for joint analysis in different releases. So as to

differentiate these two categories we have used convolution of probability distribution function. Further,

different type of distributions has been inculcated in the fault removal process. We have reviewed standard

distributions such as Exponential and Erlang 2-stage for detection and correction behaviours. The proposed

models have produced reliable parameter estimates and goodness fit curve has also been calculated. For

further clarity the optimal rank has been calculated using the normalized criteria approach. Release-2 is

significantly superior to other three releases.

ACKNOWLEDGEMENT

The present work has been made possible with the grant provided to first and fourth author through DST

Purse Phase II, Scheme, Department of Science and Technology, India.

RECEIVED: NOVEMBER, 2019.

REVISED: JUNE, 2020

 891

REFERENCES

[1] ANAND, A., SINGH, J., KAPUR, P.K. and DAS, S. (2014) : Modeling conjoint effect of faults

testified from operational phase for successive software releases. In Proceedings of the 5th

international Conference on Life Cycle Engineering and Management (ICDQM), 83-94.

[2] ANAND, A., SINGH, O. and DAS, S. (2015) : Fault severity based multi up-gradation modeling

considering testing and operational profile. International Journal of Computer Applications, 124.

[3] GOEL, A.L. and OKUMOTO, K. (1979): Time-dependent error-detection rate model for software

reliability and other performance measures. IEEE Transactions on Reliability, 28, 206-211.

[4] KAPUR, P. K., SINGH, O., GARMABAKI, A. S. and SINGH, J. (2010a) : Multi up-gradation

software reliability growth model with imperfect debugging. International Journal of System

Assurance Engineering and Management, 1, 299-306

[5] KAPUR, P.K., TANDON, A. and KAUR, G. (2010b) : Multi up-gradation software reliability model.

In Reliability, Safety and Hazard (ICRESH), 468-474, IEEE.

[6] KAPUR, P. K., PHAM, H., GUPTA, A. and JHA, P.C. (2011a) : Software reliability assessment

with OR applications. Springer, London.

[7] KAPUR, P.K. and KUMAR, V. (2011b) : Testing resource allocation for fault detection and correction

processes under dynamic environment. In The Proceedings of National Conference on Computing

for Nation Development (INDIACOM-2011, New Delhi), 331-336.

[8] KAPUR, P.K., ANAND, A. and SINGH, O. (2011c) : Modeling successive software up-gradations

with faults of different severity. In Proceedings of the 5th national conference, INDIACom , 351-

356.

[9] KAPUR, P. K., SINGH, J. N., and SINGH, O. (2015) : Application of multi attribute utility theory in

multiple releases of software. International Journal of System Assurance Engineering and

Management, 6, 61-70.

[10] LO, J.H. and HUANG, C.Y. (2006). : An integration of fault detection and correction processes in

software reliability analysis. Journal of Systems and Software, 79, 1312-1323.

[11] MUSA, J.D., IANNINO, A. and OKUMOTO, K. (1987) : Software Reliability: Measurement,

Prediction, Application.

[12] PHAM, H., 2006. Software Reliability Modeling. In System Software Reliability, 153-177.

[13] PHAM, H. (2014) : Loglog fault-detection rate and testing coverage software reliability models subject

to random environments. Vietnam Journal of Computer Science, 1, 39-45.

[14] RANDY, J.R. (2009) : “What is a Convolution?” http://www.structmed.cimr.cam.ac.uk/Course/

Convolution /convolution.html.

[15] SAS, S. (2004) : STAT user guide, version 9.1. 2. SAS Institute Inc, Cary, NC.

[16] SCHNEIDEWIND, N.F. (1975) : Analysis of error processes in computer software. In ACM Sigplan

Notices, 10, 337-346. ACM.

[17] SINGH, O., KAPUR, P.K. and ANAND, A. (2011) : A stochastic formulation of successive software

releases with faults severity. In Industrial Engineering and Engineering Management (IEEM),

International Conference, 136-140. IEEE.

[18] SINGH, O., KAPUR, P.K., KHATRI, S.K. and SINGH, J.N.P. (2012) : Software Reliability Growth

Modeling for Successive Releases. Proceeding of 4th International Conference on

Quality. Reliability and Infocom Technology (ICQRIT), 77-87.

[19] SUN, H.W., (2002) : Analysis of Costs and Delivery Intervals for Multiple-release Software (Doctoral

dissertation, New Jersey Institute of Technology, Department of Industrial and Manufacturing

Engineering.

 892

[20] XIE, M., HU, Q.P., WU, Y.P. and NG, S.H. (2007) : A study of the modeling and analysis of software

fault detection and fault correction processes. Quality and Reliability Engineering

International, 23, 459-470.

[21] YAMADA, S., OHBA, M. and OSAKI, S. (1984) : S-shaped software reliability growth models and

their applications. IEEE Transactions on Reliability, 33, 289-292.

[22] YAMADA, S., NISHIGAKI, A. and KIMURA, M. (2003) : A stochastic differential equation model

for software reliability assessment and its goodness-of-fit. International Journal of Reliability and

Applications, 4, 1-11.

