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ABSTRACT 

This article addresses the problem of inventory control in a service facility system in which ordering level is controlled by MDP. 

A discrete time service facility system is studied in which demand process follows a Bernoulli process. If a customer finds a free 
server, then he/ she enter the server immediately, otherwise join the waiting space with finite capacity say N. Inventory pool 

with maximum level S is maintained at service station to satisfy the customers. The (s, S) type policy is adopted to the inventory 

the lead times and service times are assumed to follow a geometric distribution. Average cost criteria based MDP is 
implemented to fix the optimal policy to be implemented. The results are illustrated numerically. 

 

KEYWORDS: Discrete time service facility system, discrete inventory system, (s, S) ordering policy, Markov Decision 
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RESUMEN 

Este articulo trata el problema del control de inventarios en un sistema de facilidades en el cual el nivel de órdenes es controlado 

por un MDP. Un sistema de facilidades tiempo discreto es estudiado en el cual el proceso de  demanda sigue un proceso  

Bernoulli. Si un cliente halla libre un server, entonces  accede inmediatamente, en otro caso se une a un espacio de espera con 

capacidad finita digamos N. El pool de inventarios con una nivel máximo S es mantenidos en una estación de servicios para 

satisfacer los La política de inventarios adoptada es del tipo (s, S) los tiempos se asumen siguen una distribución geométrica. El 

costo promedio basada en  MDP se implementa para  fijar la política  optimal  a implementar. Los resultados son  ilustrados 
numéricamente. 

 

PALABRAS CLAVE: Sistema de facilidades de servicio a tiempo discreto, sistema de inventario discreto, Política de ordenes  
(s, S) , Proceso Markoviano de  Decisión (MDP). 

 

1. INTRODUCTION 

 

Inventory control in service facility is a recent topic. Many researchers contributed to this domain with both 

deterministic and stochastic demand patterns. Berman, O., et al. [2] studied deterministic inventory control in 

service facility in 1993. Sapna, K.P. and Berman, O. [3], published their articles stochastic inventory control 

in service facility in 2000. Howard [12] used basic principles of Markov Chain theory and Dynamic 

programming to develop a policy-iteration algorithm for Markov decision processes problems: means 

sequential decision process with an infinite planning horizon. A theoretical foundations to Howard policy-

iterations method has been developed by Blackwell [4], Denardo and Fox [6] and Veinott [25]. Markov 

decision model with Linear Programming method has been studied by De Ghellinck [5] and Manne [18], 

Derman [7] and Hordijk and Kallenberg ([10], [11]). Another method for solving MDP problem is value-

iteration algorithm which was developed by Odani [19] to find lower and upper bounds for the minimal 

average cost. 

The Markov decision models finds applications in a wide variety of fields. Some important applications are in 

the fields of inventory, queueing, communication networks. Machine maintenance is a major area of research 

with MDP in the last eighties(Golabi et al. [9], Kawai [13], Stengos and Thomas [22] and Tijims and Van der 

Duyn Schouten [24]. A wide survey of real application of MDP models has been given in White [28]. 

Discrete queues is object of study in the recent past. A discrete time queue with two identically independent 

streams of customers and service time of slot with multiple servers is studied in Lin and Silvester [16]. They 
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found the stationary plot of loss of customers from each class under complete sharing. Takahashi and Hashida 

[23] analyze a discrete time queue with infinite buffer and identical and independent arrivals from multiple 

priority from head of the queue. Markov modulated arrival process has been studied in Garcia and Casals [8]. 

Le Boudec [14] discuss numerical example method for computing the loss of difficult classes in a discrete 

queue with Markov modulated Bernoulli process. Liao [15] obtained the probability of loss of different 

classes in a discrete queue with Markov modulated Poisson arrivals. Rubin and Tsai [20] and Wanger [27] are 

other articles dealing with discrete queues. Specifically Rubin and Tsai [20] considered the problem in 

generating functions approach, by deriving waiting time distributions for the infinite buffer queue and general 

arrival process. 

Wagner [27] studied queueing systems with Markov modulated arrivals and infinite buffer. He obtained 

system performance measures like waiting times for lower class (priority) customers. Sharma and Gangadhar 

[26] studied both delay moments and distributions of the two classes of customers (traffic) for a finite discrete 

queue when space and time priority is considered. 

In this paper we considered a discrete time based service facility system maintaining inventory. Hence 

inventory is main level and used in the service station. For example pumper, tire used in the car service 

station. Unit blood used in a hospital for operations. In traditional inventory management systems, whenever a 

demand occurs an item from stock is issued immediately. But in service facility a specific item is issued to the 

customers after a fixed or random service time completion. So mean time accumulations of demands form a 

queue emerges. This category of problem in deterministic demand was first considered by Berman, O. et al 

[2], Sapna, K. and Berman, O., [3] studied both Poisson arrival and renewal type arrivals and inventory with 

Zero and positive lead times. Arivarignan et al. [29] studied the service facility system with negative 

demands. All the 

above articles deal with only continuous time Markov processes with specific policy in inventory 

management. 

We considered the problem with an analyzing Markov Decision Processes involved in controlling inventory 

reordering (replenishment) processes with optimal policy. The objective of the model is to determined an 

optimal ordering policy for the SFS (Service Facility System) with inventory by using average cost criteria. 

The rest of the paper is organized as follows. Section 1 is of introducing nature and motivation for this 

research and literature review. In section 2 formulation of the problem as a MDP is proposed. In section 3 

analysis of the system and transition probability matrix are introduced to fix the problem within MDP frame. 

In the section 5, system performance measures are computed. A numerical example is provided in section 9 to 

substantiate the results obtained is previous sections.  

 

2. MODEL FORMULATION 

 

Consider a service facility in which inventory is maintained to serve the customers. The time horizon 

considered is of infinite which is divide into intervals of equal length say   (discrete time). We assume that 

the system activities like arrival, service and departure occurs only of the end points of the time intervals 

(slots). That is the events are assumed to occur at some points but one after another. The demanded items 

from the system is issued to the customer only after a random service time. In general retail stores customers, 

will not or cannot be allowed to wait for long period of time. In our problem customers to wait until the spare 

part (inventory) is taken from stock to complete the service. Also we assume for convenience of our model 

that only one item is used per customer. 

 Inventory is maintained upto maximum capacity of S and the waiting hall is used to be finite (say N). 

 The customer arrives to the service facility system following Bernoulli process with probability p 

and    denote the non-arrival of customers. 

 If the server is free the customer immediately enter the server, otherwise join the waiting space with 

limited capacity N. 

 A customer to find the waiting space full (N customers) is forced to balk the system. 

 The server from inventory provides uses one item to serve customer. After service completion 

customer leaves the system with one item. 

 Customer's serve times are independent and geometrically distributed with probability q, where    = 

1- q is the probability of non - completion of serve. 
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 Order quantity Q = S-s is placed whenever the inventory levels is  s with Q > s. The order is 

delivered after a lead time having geometric distributed with parameter r > 0, where    = 1 - r is the probability 

that ordered items not received. 

Discrete time systems are concerned the events happens within the period [t, t + 1], that is between time 

epochs t and t + 1, for t = 0, 1, 2, . . . . We assume that demand, event occurs first then service completion 

event occurred of customers and finally the replenishment event occurred. 

Notation 

   = 1 - p 

   = 1 - q 

   = 1 – r 

 

3. ANALYSIS 

 

Let the random variable, Xt denote the number of customers waiting in the space provided with maximum 

capacity N and Lt denote inventory (on hand) level at time epoch t. Clearly the stochastic process {(Xt, Lt), t = 

0, 1, 2, . . .} is a discrete time Markov chain with state space E = {(i, k): i = 0, 1, 2, ...,N, j = 0, 1, 2, . . . , S} , a 

two dimensional space. 

This discrete Markov Chain is given has a probability transition function. 

P ((i, k)(j, l)) = Pr{Xt+1 = j, Lt+1 = l | Xt = i, Lt = k}, 

(i, k), (j, l)   E. Various transition probabilities at the occurred of events are defined as 

(i) When the number of customers i = 0, and order placed 

(a) Pr{A demand arrives} = p, i = 0, k = s + 1, ..., S. 

(b) Pr{No demand arrives} =    , i = 0, k = s + 1, ..., S.  

(c) Pr{An arrival of demands occur ordered quantity not replenished} = p  , i = 0, k = 0, 1, 2 . . . , s. 

(d) Pr{No demand arrives and ordered items not replenished} =      , i = 0, k = 0, 1, 2, . . . , s. 

(e) Pr {No demand arrives and quantity ordered replenished} =    r, i = 0, k = 0, 1, 2, . . . , s. 

(f) Pr {An arrival of demand occurs and ordered items replenished} = pr, i = 0, k = 0, 1, 2, . . . , s. 

(ii) The number of customers, i  1 and k > s (order not placed) 

(a) Pr{A demand arrives but service not completed} =    q, i = 1, 2, , . . .N, k = s + 1, s + 2, . . . , S. 

(b) Pr{No demand arrived and service also not completed} =      ,  

i = 1, 2, 3, . . . ,N, k = s + 1, s + 2, . . . , S. 

(c) Pr{A demand arrives and ordered items not received} = p   . 
(d) Pr{A demand occurs but service is not completed and ordered items are not received} = p      ,  
i = 1, 2, 3, . . .N, k = 1, 2, 3, . . . , s. 

We can find all possible combinatorics of events and the probabilities. For example same of the one step 

transitions probabilities of the Markov chain are obtained as follows,  

 Transfer from state i = 0, k = 0, 1, 2 . . . , s to the state j = i and l = k with probability      . 
 Transfer from state i = 1, 2 . . .N, k = 0, to the state j = i, l = j+Q with probability    r. 
 Transfer from state i = 1, 2, . . .N, k = 1, 2, . . . s to states j = i, l = j + Q -1 with probability pqr. 

From the above set of arguments we get the transition probability matrix (tpm), P = (p(i, k), (j, l)). Now, we 

define the states of the system in dictionary order as follows. < i >= (i, 0)(i, 1) . . . (i, S), where i = 0, 1, 2 . . 

.N. Now we an order the above states that (< 0 > < 1 > < 2 > … < N >) a finite set of vectors. 

Now the transition probability matrix P of the discrete Markov chain can be expressed as block partitioned 

matrix of the form. 

 
where 
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Now we have 

 
 

 
 

 

 
Also sub matrices are the parts the systems transition with respective transition probabilities. The matrices A0, 

A1, A2, B0, B1, B2 and B3 are square matrices of order S + 1. 

The stability of the system in long-run is generated by the condition that the Markov chain (X, L) is 

irreducible and aperiodic, which gives the positive recurrence. The transition matrix A = A0 + A1 + A2 gives 

the condition for stability as follow. 
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Let   denote the steady-state (equilibrium) probability vector for the system, then the vector   satisfies the 

condition   A =   and  e = 1, where   = ( 0,  1, ...,  S) and  

Aij = A0 + A1 + A2 

 
Steady state analysis of the systems {Xt, Lt: t  0} with tpm P has state space E = {0, 1, 2, ...,N} x {0, ..., S}. 

The limiting distribution of Markov Chain is defined by 

 (i, k) =                           P 

where    (i, k), denote steady state probability with initial state (i, k). If    = ( 0,  1,  2, ...,   N) satisfies the 

equals   P =    and   e = 1, then, we have for 0   i   N,   i = (  (i, 0),   (i, 1), ...,   (i, S)). 

 

4. WAITING TIME DISTRIBUTION 

 

Let {xi, i  0} denote the stationary probability vector, that a customers sees i customers ahead of him at 

arrival epochs. Then 

x0 =  0 + q  i 

                                                                         and xi =    i + q  (i+1), 1   i   N            (1) 

Since   i =   0R
i
, i   1, where R = A2(I - A1 - A2G)

-1
G is a minimal matrix, which is a solution of the matrix 

polynomial 

G = A2 + A1G + A0G
2
. 

The matrix G is order S + 1, which can be obtained by solving the recurrence equations  

G(i+1) = (I - A1)
-1

(A0 + A2  
  ), 0   i   N 

where I is the identity matrix and G0 is a matrix with all entries are zero. 

From (1) We have 

x0 =   0[I + qR] 

              and xi =   0R
i
[   I + qR], 1   i   N, 

where I(S+1) x (S+1) is an identity matrix. 

Let Wq(r) denote the probability that a customer has to wait exactly r slots before getting service and let 

  
 (z) =         

 
    

Then, 

           Wq(0) = x0 and Wq(r) =     
     

   , r   1                                        (2) 

where 

                                                     (3) 

From (2) and (3), we get 

 
 

5. SYSTEM PERFORMANCE MEASURE 

 

In this section we derive some system performance measures in the rub. 

(a) mean inventory level 

(b) mean reorder rate 

(c) mean shortage rate and 

(d) mean balking rate. 

(e) mean number of customers in the system 
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(a) Mean Inventory Level 

Let    denote the mean inventory level in the service facility system in the long-run. Suppose  (i,k) denotes 

the steady state probability that there are i customers waiting and k items in stock for service completion 

purpose. Then 

 
(b) Mean Reorder Rate 

Let    denote the mean reorder rate, then 

 
(c) Mean Shortage Rate 

Let    denote the mean shortage rate for the system. Then 

 
(d) Mean Balking Rate 

Mean balking rate for the system when the waiting space is full is given by 

 
(e) Mean number of customers in the system 

Mean number customers in the system is given by 

 
 

6. MARKOV DECISION PROCESS 

 

MDP is a versatile tool developed by Howard [12] and Bellman [1]. Stochastic dynamic programming is the 

technical name for MDP. Discrete time MDP is the formal dynamical system which has application in 

machine maintenance, inventory control and communication systems. Any MDP formulation has 5 

components (a) Time epochs (b) State space (c) Decision sets (actions) (d) Transition probabilities and (e) 

cost functions. 

(T, E, Ae, p(   , a), c(   , a)) 

MDP FORMULATION 

Time epochs. 

The time epoch be 0,  , 2 , 3 , ... on the infinite time line [0, ). 

State Space. 

The states of the MDP lie in the space 

 
Action set. 

The action set consist of three actions 0, 1 and 2, where 0 means no order, 1 means 

order for Q items Q = S -s > s and 2 means compulsory order for Q items at inventory 

level is zero. 

Then 

 
The action set is 
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Hence the state space E is partitioned as E = E1  E2  E3 … 

Transition Probability. 

The Markov Chain {(Xt, Lt): t   0} with discrete time space t                  has state transition 

probabilities p((i,k),(j,l)) and tpm P. The detail of transition are described in section . 

As a result of choosing action a  Am in state m at decision epoch t, 

(i) the decision maker incurs a cost Ct(m, a) and 

(ii) the system state at next decision epoch is determined by the transition probability pt( |m, a). 

In our SFS the probability distribution is given by pt((j, l)|(i, k), a). 

Thus Pt = (pt((j, l)|(i, k), a)) is a square matrix of order (N + 1)(S + 1). 

Reward/ Cost Function. 

The real valued function Ct((j, l), a) defined for (j, l)   E and a  A(j,l), denote the cost incurred in period t. 

 
where h- Inventory holding cost/ unit item/ unit time, c1- Cost/ order, c2- Shortage cost in terms of inventory 

level, c3- Cost/ customer lost, w- Waiting cost of the customer/ unit time.   ,   ,   ,   , and    are system 

performance measures of the service facility system considered. 

The collection of objects {T, E, Ae, pt( |s, a), ct(s, a)} is referred as Markov Decision Process. 

 

7. MDP PROCEDURE 

 

Fix a stationary policy R for the considered system. Under policy R each time action a =       
  is taken 

whenever the system is in state (i, k) at decision epoch t. 

The process {(Xt, Lt): t = 0, 1, ...} describing the state of the system at the decision epochs is a Markov chain 

with one-step transition       
     

p(j,l)(i,k)(R(i,k)), (i, k), (j, l)   E when policy R is used. 

Then the n- step transition probability of the Markov chain is of the form 

 
for n = 1, 2, 3, ... 

By Chapman-Kolmogorov equation 

 

 
Define the expected value function 

Vn((i, k),R) = the total expected costs over the first n decision epoch when the initial state is        

                       (i,k) and policy R is used 

                                                  
The average cost function gi(R) by 

 
Next we discuss the Policy-iteration algorithm under unichain assumption. 

For each stationary policy the associated Markov Chain {Xn, Ln} has no two disjoint closed sets. 

 

8. POLICY- ITERATION ALGORITHM 

 

Step 0. (Initialization) 

Choose a stationary policy R for the periodic review based inventory control in service facility system. 

Step 1. (Value Determination Step) 

For the current policy R, compute the unique solution (q(R), ve(R)) to the following linear equations 
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Step 2. (Policy Improvement) 

For each state e = (i, k)   E determine the actions yielding 

 
The new stationary policy R

*
 is obtained by choosing   

  = ae 

Step 3. (Convergence Test) 

If the new policy R
*
 = R, the old one. Then the process of searching stops with policy R. Otherwise go to Step 

1 with R replaced by new R’. 

 

9. NUMERICAL EXAMPLE 

 

Consider a service facility system with inventory having limited waiting space, N = 4 and maximum 

inventory S = 3. 

It is assumed that the arrival of customers to the systems follows a Bernoulli process with probability   

p = 0.4 and that of non-arrival    = 1-p. The service time of a customer are geometrically distributed with 

probability q = 0.6 and    = 1- q. We adopt (s, S) ordering policy which means a fixed quantity of Q items is 

ordered whenever the inventory level is to or less than a free fixed level s, where Q = S -s, (Q > s). 

 
Figure 1:  Discrete time Service Facility System with Inventory Management 

The ordered items are delivered after a lead time having geometric distribution with parameter r = 0.5 and    = 

1- r. 

Assume the waiting cost w = 0.1 per customer/ period, the shortage cost c2 = 0.15 in terms of inventory level, 

holding cost h = 0.1, balking cost c3 = 0.15 per customer lost and ordering cost for Q items is c1 = 0.2. 
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Initiate the policy iteration algorithm with the arbitrary policy: 

R
(0)

 = (0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2), 

which prescribes the compulsory order when the inventory level is zero. 

After two iterations we obtained the optimal policy. 

R
(2)

 = (0, 0, 1, 2, 0, 0, 1, 2, 0, 0, 1, 2, 0, 0, 0, 2, 0, 0, 0, 2) 

and this policy stabilizes for further iterations. 

Thus the optimal policy is given by 

R
(*)

 = (0, 0, 1, 2, 0, 0, 1, 2, 0, 0, 1, 2, 0, 0, 0, 2, 0, 0, 0, 2). 

 

10. CONCLUSION 

 

In this paper we investigated the problem of inventory control in a service facility system. For a discrete time 

service facility system we applied MDP tool to get an optimal reordering rule (policy) R
*
, which yields lowest 

average cost during system implementation. A numerical example is also provided to substantiate the result 

obtained. 

Ordering policy adopted in this study is (s, S) type with fixed order quantity Q = S-s >s. But other policies (i) 

varying order quantities at different inventory levels and (ii) modified ordering (up to S) policies also deserve 

further investigations in future. 
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