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ABSTRACT 

The computed tomography images data posse an intrinsic hierarchical structure; that is, when images (lower-level or micro-level 

units) are nested within individuals (higher-level or macro-level units). The problem with two-level data, where it is expected 
that a dependent variable measured on the individuals is influenced by variables measured on the images is the focus of this 

article. Methodology for the analysis of this type of scenario, known as micro-macro situation, has been little investigated. In 

this article, a latent variable modeling approach is proposed, where morphometric information of multiple images and 
characteristics of the patients, such as age and sex, are combined in a single logit model.  Multilevel Factor Analysis is used to 

obtain latent variables at the macro level, which can be interpreted as synthetic indicators of morphometric differences in images 
between individuals. To illustrate the methodology, real data of patients with cerebral hemorrhage were used. The results are 

compared with those obtained by an alternative approach. The empirical study revealed a comparable performance between the 

two methodologies, although the new approach suggests a relative superiority in terms of predictive capacity. 
 

KEYWORD: Computed tomography imaging, Image analysis, Multilevel Factor Analysis, Micro-macro analysis, Prognostic 

procedure. 
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RESUMEN 

Los datos de imágenes de tomografía computarizada poseen una estructura jerárquica intrínseca; es decir, las imágenes 

(unidades de nivel inferior o micro) se anidan dentro de los individuos (unidades de nivel superior o macro). El interés de este 
artículo se centra en un problema con datos de dos niveles, donde se espera que una variable dependiente medida sobre los 

individuos, esté influenciada por variables medidas sobre las imágenes. La metodología para el análisis de este tipo de escenario, 

conocido como situación micro-macro, ha sido poco investigada. En este artículo se propone un enfoque de modelación de 
variables latentes, donde se combina en un único modelo, información morfométrica de múltiples imágenes y características de 

los pacientes, tales como edad y sexo. Se utiliza Análisis Factorial Multinivel para obtener variables latentes a nivel macro, que 

pueden interpretarse como indicadores sintéticos de las diferencias morfométricas de las imágenes entre individuos. Para ilustrar 
la metodología, se utilizaron datos reales de pacientes con hemorragia cerebral. Los resultados se comparan con los obtenidos 

por un enfoque alternativo. El estudio empírico reveló un desempeño comparable entre las dos metodologías, aunque el nuevo 

enfoque sugiere una superioridad relativa en términos de capacidad predictiva. 
 

PALABRAS CLAVES: Imágenes de Tomografía Computarizada, Análisis de imágenes, Análisis Factorial Multinivel, Análisis 

micro-macro, Procedimiento de Diagnóstico 

 

1. INTRODUCTION 

 

The morphometric examination of computed tomography (CT) images plays an important role in clinical 

practice (Rodríguez and Sossa, 2019). The development of modeling techniques for this type of information 

would facilitate the reduction of uncertainty in medical diagnosis and it will help to make better decisions. 

In the neuroimaging field, there is a need of understanding the relative contribution of the morphometric 

analysis of the spontaneous intracerebral hemorrhage (ICH) in the survival of the patients. The presence of 
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multiple sections of images (slices) for each patient (see Figure 1) could represent a problem in the 

interpretation of the hemorrhage magnitude. An accurate morphometric analysis of the hemorrhages and their 

role in the survival of the patients is still a challenge in the practice of specialists dedicated to the image 

analysis.  

 

 

Figure 1.  CT images of a spontaneous intracerebral hemorrhage (slides 5, 6, 7, 8 and 9) 

 

Classical statistical modeling methods assumes that sampling are independent observations. In morphometric 

researches, however, the data belonged to images usually posse an intrinsic hierarchical structure in which 

images are grouped within individuals (see Figure 2). For this type of multilevel data, the assumption of 

independence among observations is not realistic, because it is reasonable to assume that the observations 

within an individual are more similar.  

 

 
Figure 2.  Hierarchical structure of CT neuroimaging data 

It is very important to point out that, even when many variables are collected on the images, the interest in the 

present research is to find differences between individuals (or groups of individuals), instead of explaining the 

differences between the images. In this context, we assumed that independent variables measured on the 

images (micro-level) affect dependent variables measured on the individuals (macro-level). This type of 

scenario is referred as micro-macro situation (Raudenbush and Bryk, 2002) measured at different levels 

requires to consider an approach that allows analyzing the relationship between units at each level of the 

hierarchy, taking into account the two sources of variability: the variability within and between individuals 

(Snijders and Bosker, 2012). Multilevel analysis model is an appropriate methodological tool for analyzing 

data with hierarchical structure, however, most of the methods focus only on the so-called macro-micro 

models, where the response variable is measured at the lowest level of the model (Longford, 1993; 

Goldstein,1995; Kreft and De Leeuw,1998). 

In a micro-macro analysis, data measured on the images need to be aggregated at the macro level, such that 

the aggregated values can be related to the patient response. On the other hand, the examination of the 

morphometric heterogeneity between the images of each patient can be very important for the diagnosis.  In 

the last decade, several methods were proposed in order to analyze micro-macro data (Croon and Van 

Veldhoven, 2007; Bennink et al.,2013; Bennink, 2014; Bennink et al., 2016; Croon and Kroon, 2016; Becker 

et al., 2018). These methods are based fundamentally on latent variable approaches (Muthén,1998) and are 

mainly motivated by psychological or sociological problems that include relationships between individuals 

and groups, and where the characteristics of individuals can affect some group-level response data.   

How then to approach a problem with data at two levels where it is expected that an outcome variable related 

to the patient, measured at the macro level, is influenced by morphometric variables of CT images, measured 

at the micro level? To this end, Montero et al. (2017) proposed a latent variables modeling approach, where 

the multilevel structure of micro-macro relationships were appropriately handled. This approach is based on a 

strategy comprising two stages.  In a first step, a Principal Component Analysis (Joliffe, 2002) carry out from 

the intra-individual covariance matrix of the morphometric variables for to produce factors (latent variables) 

that successively explain most of the total variance of the morphometric variables at the macro level 

(patients). These factors can be interpreted as synthetic indicators of the morphometric differences of the 

https://pure.uvt.nl/portal/en/persons/m-bennink%2861fe15a2-6e65-416f-b187-c79f34439c74%29.html
https://pure.uvt.nl/portal/en/persons/ma-croon%28928eb2df-118d-4851-a293-38e2c3dd6de7%29.html
https://pure.uvt.nl/portal/en/persons/b-kroon%28f4acf275-6ca7-42c7-bf48-0595e6936155%29.html
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images between patients. In a second step, a latent variable regression (LVR) model is adjusted, in which the 

values of the more important (in term of variance) principal factors at macro level (patients), obtained from 

the intra-individual PCA, are treated as predictors or explanatory variables for the response variable relative 

to the patient. We will refer to this strategy as PCA-LVR approach.  

In the current article, we proposed an alternative approach. The purpose of this paper is to consider both 

methodologies, and investigate how they perform in practice, when applied to the micro-macro analysis of 

problems with morphometric data of TC images.   

The difference of our proposal with respect to the PCA-LVR approach is in the method used to construct the 

latent variables at the macro level. Here, we propose the use of Multilevel Factorial Analysis (MFA) (Hox, 

2010) to produce factors that explain most of the common variance of morphometric variables at the patient 

level, and that these factors can also be used as latent explanatory variables of the patient’s response.  

Both approaches are applied to a real data set and the results are compared. We conclude that, independently 

of the method (between-individual PCA or MFA) chosen to construct latent variables at the macro level, the 

two strategies discussed in this article can be considered as alternatives of a unified approach of micro-macro 

multilevel analysis of morphometric data of TC images that are related to a patient's clinical response. 
 

2. MOTIVATION 

 

In order to motivate and illustrate these different approaches, we take up the problem presented by 

Montero et al. (2017). This is about the study of the multiple factors that could be considered predictors of the 

survival of patients with ICH.  

Today, despite having many researches there are not enough elements to reach consistent conclusions on this 

research issue (Morgenstern et al., 2010; Tellería 2006; Escudero et al., 2008; Ferrete et al., 2015). The 

incorporation of new analysis strategies, guided at building appropriate methods to analyze data from CT 

images, can lead to the improvement of the effectiveness in the diagnosis of this or other types of pathologies.  

The examination of the morphometric heterogeneity of hemorrhage images within and between patients can 

be very important as part of a prognostic tool that allows us to assess the intensity of the neurological damage 

on the patient's life. The fundamental question is: What effect does the morphometry of the CT images have 

on the risk of not surviving the hemorrhage in certain groups of individuals? An obvious problem is: How to 

predict or explain variables at patient level from morphometric variables measured at the image level? 

 

3. METHODOLOGY  

 

A unified approach for the micro-macro multilevel analysis de CT image data can be summarized as follows:  

In a first step, to use techniques of Factorial Analysis to reduce a large number of variables into fewer 

numbers of factors at the macro level.  These technique (between-individual PCA or MFA) extracts maximum 

common variance from all morphometric variables and puts them into a common score (factors) at each level 

analysis. As an index of all morphometric variables, we can use this score for further analysis and can be 

interpreted as synthetic indicators that represent the morphometric differences of the hemorrhages between 

the patients.  

In a second step, these latent variables are considered, together with covariates at the individual level, as 

predictors or explanatory variables for the response variable relative to the patient, in a single regression 

model at the macro level. For example, for a patient's dichotomous response, such as survival (0 = survived, 1 

= not survived), the latent variables model can be formulated as a logistic regression model at the single level. 

The practical consequences of this strategy is to make inferences at the patient level using all the information 

available at the image level.  

From a methodological point of view, the difference between approach PCA-LVR and that proposed in this 

article is lies in the Factorial Analysis technique considered in order to construct the latent variables at the 

macro-level. But the practical consequences of both strategies are to make inferences at the patient level using 

the information available at the image level
.
 

We should be aware that, independently of the aggregation strategy that has been chosen to create summary 

measures in each level of analysis, the two strategies analyzed in this work allow the creation of latent 

variables that capture both the variability between images as between patients. This is possible from the 

decomposition of the total sample variance-covariance matrix of the morphometric measurements in within 

individual matrices (micro level) and between-individual matrices (macro-level). 
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Consider a study where there are I different individuals (macro-level) and for each individual i ( =1, 2,.. I) 

there are    images (micro-level). It is assumed that the values      of the individual i on a response variable Y 

at the individual level, can be explained or predicted by a set of P explanatory variables              with 

values                 for the individual I and Q morphometric explanatory variables            with values 

                  for the image  j  ( =1,2,…,     of the individual i. 

We can obtain a covariance matrix in the different levels from a multivariate model (Goldstein, 1995). For 

morphometric data of CT images, the model can be formulated in the following way: 

Let        be the measurement of the lth morphometric variable ( =1,2,…,Q)  in the j-th image              

of the i-th individual            .  Although the morphometric indicators could be seen as the units at the 

lowest level, the model is defined at the image level and at the individual level. For each morphometric 

variable, an indicator variable         is created when    ,        0 otherwise. Hence, the multivariate 

two-level model can be described by the following equation: 

        
                                                                                       (1) 

The fixed parameters     (q=1,2,…,Q)  represent the estimates of the population means of the Q 

morphometric variables. The unobservable error vectors    
                     y   

                  and 

  
                  are assumed to be independent and identically distributed. More explicitly, it will be 

established that                              for each i and j. The matrix of variance and covariance of 

the random errors of level-1, )( ijuCov , is called the intra-individuals covariance matrix, while the 

matrix of the errors of level-2, )(
i

 Cov , is called the between-individual covariance matrix. 

One of the advantages of this procedure is that the estimates of the covariance (or correlation) matrices at 

each level of analysis can be used directly and separately in subsequent analyzes (Goldstein, 1995); for 

example, in the PCA-LVR approach the set of factors or main components is estimated only at level-macro, 

this is, from a between-individual covariance matrix of the morphometric variables.  

The approach proposed in this paper is based on using MFA to create one or more latent factors at each level 

of analysis (Croon and Van Veldhoven, 2007; Lawley and Maxwell, 1971). Here, the two covariance matrices 

are used to carry out a simultaneously factor analysis at both levels. Only the factors at individual-level are 

selected in order to represent the morphometric differences of the hemorrhages between the patients.  

Beyond the method used to obtain the latent variables, the foundations of the strategy proposed in this article 

are based on the same ideas as the PCA-LVR approach. From a practical point of view, one advantage of both 

procedures is that these do not assume that there is a complete set of morphometric indicators per image; 

therefore, incomplete data due to the impossibility of performing any measurement on the image (missing 

data) can be accommodated without difficulty to produce the covariance matrices. 

 

3.1. The proposed approach 

 

We now can outline the procedure proposed, which we call MFA-LVR, in two-stage framework.  Statistics 

techniques used in each step are briefly described in the following two subsections. 

 

 3.1.1   Multilevel Factor Analysis 

 

In a first step, the idea is to conduct an MLFA in order to model the values of the set of Q morphometric 

explanatory variables, denoted by    = (            ), as a function of factors at image level (or level 1) 

and at the individual level (or level 2), represented by    
 and     

, respectively.  

The model level image is given by: 

             
                                                                                    (2) 

where,    is a vector of the mean responses of the individual i for each of the Q morphometric indicators for 

the population of images nested in the individual i;      
 is a vector of the image j for the factors at the level 

image, with                       ;    is a factor loadings matrix that describes the relationships 

between the image level factors,    , and the variables,     ; the     
   are uncorrelated image-specific errors, 

with                    . Typically, when the   s are continuous variables, we assumed that the errors 

and factors are distributed normally, with all errors uncorrelated with each other and with the factors.  
The between-individual model is given by: 

https://www.google.com.cu/search?hl=es&tbo=p&tbm=bks&q=inauthor:%22D.+N.+Lawley%22
https://www.google.com.cu/search?hl=es&tbo=p&tbm=bks&q=inauthor:%22Albert+Ernest+Maxwell%22
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    ,                                                                                       (3) 

where,   is a vector of means for the P morphometric indicators;    is a vector of the values of the individual 

i for the factors at the individual level, with         y           ;    is a factor loading matrix that 

describes the relationships between the individual level factors,    
, and the values of the individual level 

random intercept,   ; and    is the error for the individual i, with                    . Like the image-

level model, the errors and factors are assumed to be distributed normally, with all the residues mismatched 

between themselves and with the factors. 

Substituting equation (3) in (2), a single combined model is obtained: 

             
      

        ,                                                           (4) 

where, it is shown that the observed responses at the image level are specified as different effects of factors at 

the image level and at the individual level. In this model, the individual level has M2 factors with 

corresponding factor loading matrix    and the image level has M1 factors with corresponding factor loading 

matrix   .   

In this article, the vector of factors at the individual level    
 represents a set of M2 synthetic indicators of the 

morphometric differences of the hemorrhages between the patients, which should be considered as 

explanatory variables in a logistic regression model
23

. 

 

3.1.2   A model with latent variables for discrete response 
 

For a dichotomous patient response, such as survival, the latent variable model can be formulated as a logistic 

regression equation: 

Let    be the realization of a response variable Y measured at the individual level that can take the values one 

and zero with probability    and     , respectively, with Bernoulli distribution with parameter     Consider 

that the dichotomous answer     can be explained or predicted by assuming that the logit of the underlying 

probability    is a linear function of multiple explanatory variables                at the individual level and 

a set of latent variables      
      

           
 at the individual level. The model can be expressed as: 

              
  

    
         

       
                                                          (5) 

It is important to note that    
 is a vector of continuous latent variables, but the vector    can be of any type 

and that the analysis of interactions between the unobserved variables of the vector    
  and the observed 

variables of the vector    
 is valid. 

 

4. AN APPLICATION BASED ON DATA OF NEUROIMAGES AND CLINICAL PARAMETERS 

TO PREDICT SURVIVAL 

 

By way of example, in this section we apply the strategy described in this paper to real data in order to 

explore what could be gained by using MFA-LVR approach in a real research problem. For this purpose, the 

same dataset previously described in Montero et al. (2017) was used (the online database is given in Montero 

(2019).  The results of a logistic regression model were compared with those obtained in that publication, 

where the CPA-LVR approach was applied.  

Once more, we considered that the data used in this study constitute a hierarchically ordered system, where 

the images are nested within individuals, establishing two different levels: the units of study in level-1 (micro 

level) are the images and units of study in level-2 (macro level) are of patients (Figure 2). 

In summary, we analyzed data from 39 patients (13 women and 26 men) with a diagnosis of ICH and who 

were carried out a CT scan within the first 6 hours of initiating symptoms. Ages were in an interval between 

48 and 87 years. Of the total patients, 11 died after the hemorrhage. The following morphometric 

measurements of each of the hemorrhage images obtained by CT are also part of the database: area, perimeter, 

elliptical shape factor, maximum diameter and minimum diameter (Rodríguez and Sossa, 2011). The 

morphometric variables were measured using the MADIP system (Rodríguez et al., 2001) and a 

transformation was applied to avoid the undue importance of disproportionate ranges caused by the different 

units of measure of some variables. 

The response of interest in this study is the survival of the patient after the hemorrhage. The variable takes the 

value 0 if the patient survives and the value 1 if it does not survive. The risk factor is a single latent variable 

(named Factor) that synthesizes the morphometric characteristics of neuroimages. The explanatory variables 

of the patient's sex and age were also considered as predictors of survival, since it is hypothesized that men 
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and younger people are less likely to survive the hemorrhage. The female sex is taken as a reference category. 

Age was measured in number of years and was categorized into three groups according to the following age 

groups: less than 60 years, between 61 and 75 years and over 75 years. The group of patients between 61 and 

75 years old is taken as reference. The interaction between the latent variable Factor and the variable Age was 

also included in the model, considering that the influence of the morphometry of the images on the survival of 

patients can be mediated by the influence of age. 

The variables in level-1 (micro) refer to the morphometric characteristics of images; while the characteristics 

of patients represent the variables in level-2 (macro). 

 

5. RESULTS AND DISCUSSION 

 

Table 1 shows the values of the Intraclass Correlation Coefficient (ICC) (Koch, 1982) for each morphometric 

variable, which in this work refers to the proportion of the total variance in the variable of interest due to the 

differences between the individuals. 

Between the variables that characterize the size of the hemorrhage, the highest estimated ICC (0.61) was for 

the Perimeter variable (Table 1). The smallest (0.58) was for the Area variable. Therefore, a significant 

percentage of the variability of morphometric measurements is attributable to differences between patients, 

rather than between images. However, considerable variability there is between the variables in terms of the 

proportion of variation explained between the images, especially for the case of the variable Elliptic Form 

Factor. 

Table 1.  Intraclass Correlation Coefficient (ICC) for each morphometric variable 

Variables  Intraclass Correlation Coefficient 

Area 0.58 

Perimeter 0.61 

Elliptical Shape Factor 0.15 

Maximum diameter 0.45 

Minimum diameter  0.59 

 

Of particular interest in this paper is the variance decomposition of the morphometric variables with respect to 

within individual variation and between individual. Table 2 presents the corresponding within-individual and 

between-individual correlation matrices of the morphometric variables. As shown in this table, the 

correlations between the morphometric variables are different at the two levels. All the between-individual 

correlations are greater than the within individual correlations, except for the correlations of the variable 

Elliptic Shape Factor with the variables Maximum Diameter and Minimum Diameter. In particular, can been 

seen that the correlations at the image level are comprised in the range from -0.127 to 0.944. At the individual 

level, the correlations are greater with values from -0.333 to 0.986. These correlations are explained through a 

Multilevel Factorial Analysis of two factors, one in each level. 

Table 2.  Within and between correlation matrices of the morphometric variables 

Within correlation matrix  

Area  1.00     

Perimeter  0.81   1.00    

Elliptical Shape Factor  0.17  -0.23  1.00   

Maximum diameter  0.83   0.70  0.52  1.00  

Minimum diameter  0.75   0.95 -0.34  0.56  1.00 

Between correlation matrix  

Area  1.00     

Perimeter  0.98   1.00    

Elliptical Shape Factor -0.49  -0.53  1.00   

Maximum diameter  0.97   0.97 -0.33  1.00  

Minimum diameter  0.98   0.98 -0.61  0.94  1.00 
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5.1. Multilevel Factorial Analysis of the morphometric variables 

 

Here, we use Multilevel Factor Analysis in order to construct a latent variable that represents a summary 

measure of morphometric differences of the hemorrhage between patients. The results of a factorial model of 

two levels with a single factor in each level are presented in Table 3.  

Table 3.  Factor loads for the morphometric variables 

  Factor Loads 

Variable 

 Within 

(micro level) 

 Between 

(macro level) 

 Factor  Factor 

 Area   0.04   0.09 

Perimeter   1.00   0.98 

Elliptical Shape Factor   0.09  -0.30 

Maximum diameter  -0.87   0.77 

Minimum diameter  -0.98   1.00 

Factor Variance   0.39   3.17 

Note. Underlined figures represent loadings greater than 0.50. 

The factor structure obtained from the within individual level analysis cannot be assumed to also hold at the 

between individual level analysis
27

. The interest of the results of the MLFA in this paper is in the estimations 

of factor loads at the macro level and in the values or "scores" of this factor. The loads associated to the 

related variables to the length of the image are great, both at the micro factor and at the macro factor, but the 

variance of the factor at the macro level is greater, and therefore, this factor is explaining a greater proportion 

of uncertainty. The loads of the factor at the macro level are all positive, except for the one corresponding to 

the variable Elliptic Shape Factor, and since it was already seen that all inter-individual correlations are also 

positive, with except for the correlations of each variable with the Elliptic Form Factor, it can be thought that 

this factor represents a general measure of the size of the factor as opposed to the form of the hemorrhage. 

In Figure 3, a graph of the macro level factor values for the 39 patients is shown, ordered according to their 

rank. The graph suggests some evidence of how patients with extreme positive values for the factor could not 

survive the hemorrhage, and that patients with the extreme negative values of the factor survived the 

hemorrhage. 

 
Figure 3. Plot of the values of the macro level factor for the 39 patients ordered according to rank 

 

5.2. Logistic regression analysis 

 

The scores of the macro level factor obtained by the MFA were considered as realizations of the latent 

explanatory variable Factor in a logistic regression model (MFA-LVR model) (see Table 4). The results 

obtained in this study (expressed as odds ratios and 95% confidence intervals) are compared with those 

obtained from a PCA-LVR approach, published in Montero et al. (2017). When the odds ratio (OR) exhibits a 

value greater than 1 and the confidence interval (CI) does not contain the value 1, the effect can be considered 

statistically significant. 
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The interpretation of the results of the logistic regression using the latent explanatory variable Factor obtained 

through the MFA-LVR approach are similar to those obtained through the CPA-LVR approach. 

Table 4.  Odds Ratio (OR) and 95% confidence intervals (CI), obtained for the logistic regression models of 

the survival of the patients, conditioned to variable Factor, constructed via PCA-LVR approach (PCA-LVR 

Model) and MFA-LVR  approach (MFA-LVR Model) and the variables Age and Sex of the patients 

       PCA-LVR  Model    MFA-LVR Model 

OR 

95% CI   

OR 

95% CI 

Left 

 Limit 

Right  

Limit 

  Left 

 Limit 

Right  

Limit 

Sex 16.11 1.47  175.95   24.18 1.34  357.86 

Age (≤ 60) 32.00 1.37 746.22   28.93 1.24  673.26 

Age (≥ 76) 1.17 0.07 20.60   0.56 0.02  12.26 

Factor  2.76 1.21 6.30   4.82 1.32  17.52 

Factor x Age (≤ 60) 0.47 0.12 1.84   0.22 0.33 1.55 

Factor x Age (≥ 76) 0.19 0.04 0.97   0.08 0.01 0.81 

In both models, the indicator variables Sex (being male) and Age (less than 60 years) have a significant 

positive effect on the probability of dying after hemorrhage. The latent variable Factor also showed a positive 

effect on the reference group of the Age variable (patients between 61 and 75 years). On the other hand, the 

effect of the latent variable Factor is significantly higher in this age group in relation to those over 76 years of 

age. From here, it is interpreted that patients between 61 and 75 years with large hemorrhages are more likely 

to die after hemorrhage. 

A probability of 0.5 was used as the cut-off point to classify the predicted values of the probability of 

occurrence of the event (survived or not survived) in two classes. The overall accuracy of the two models was 

determined by comparing the predicted values with the actual occurrence of the event. The results of this 

analysis are presented in Tables 5a (PCA model) and 5b (MLA model). The PCA model correctly classified 

89.3% of the patients who survived and 63.6% of the patients who died (Table 5a). The MLA Model correctly 

predicted the result in 92.9% of the living patients, and in 63.6% of the deceased patients (Table 5b). 

Table 5a. Classification Table (PCA model) 

Observed 

Predicted 

Survival Percentage of correctly 
classified cases Yes No 

Survival 
Yes 25 3 89,3 % 

No 4 7 63,6 % 

Global Percentage 82,1 % 

 

Table 5b. Classification Table (MLA model) 

Observed 

Predicted 

Survival Percentage of correctly 
classified cases Yes No 

Survival 
Yes 26 2 92,9 % 

No 4 7 63,6 % 

Global Percentage 84,6 % 

 

5.3. ROC curves analysis 

 

The discriminatory power of the two models was analyzed using the area under the ROC curves (acronym of 

Receiver Operating Characteristic, or Receiver Operating Characteristic). The ROC curves (Figure 4) were 

constructed representing the ratio of true positives (patients who died and who the model predicted as 

deceased (sensitivity)) versus the reason for false positives (patients who survived and were incorrectly 
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classified as deceased (1 - specificity). The curve of the ACP model is very close to the curve of the MLFA 

model. 

 

 
Figure 4.  ROC Curves for the ACP model and the AFM mode 

 

The area under the ROC curve (Table 6) for the logistic regression model (ACP-LVR approach) is 0.89 (0.79 

to 0.99, 95% CI), while the area under the ROC curve associated with the model (MFA-LVR approach) is 

0.88 (0.77 to 0.99). Hence, the MFA-LVR model is comparable to the ACP-LVR model to predict survival in 

this sample. 

Table 6. Area under the curve ROC (AREAROC), Standard Error (SE), Signification (p) e 95% confidence 

interval (95% IC) obtained from the CPA model and the MLFA model 

Variable(s) of resulted of the models AREAROC SE  P  
95% confidence  interval 

Left Limit  Right Limit  

Probability: CPA- LVR Model 0.893 0.051 0.000 0.792 0.994 

Probability: .MFA-LVR  Model 0.883 0.058 0.000 0.769 0.997 

The MFA-LVR model fitted to predict the survival of patients with ICH showed an overall performance 

comparable to the PCA-LVR model and takes advantage in the correct classification of patients who survived 

in the sample studied. These results suggest a possible use of the MFA method to construct a latent typology 

of the images of the hemorrhages from morphometric variables at the image level. In addition, these results 

support the hypothesis that the MFA-LVR model would generate a more accurate classification of subjects 

than an ACP-LVR model using the same input morphometric variables. 
 

6.  CONCLUSIONS  

 

In this article, we have described a novel strategy for analyzing micro-macro designs, where the multilevel 

structure between images and individuals were appropriately handled. This approach is especially useful for 

evaluate the effects of the morphometry of CT images on some clinical response of the patient. 

In a micro-macro analysis, data at the micro level (morphometric variables) need to be aggregated at the 

macro level, such that the aggregate values can be related to the patient-related variable. The strategy propose 

in this paper allows the creation of variables that capture both the variability between images and between 

individuals, using one or more latent or unobserved factors at each level of analysis. The latent factors at the 

individual level (macro level) are then considered as explanatory variables in a single logistic model at 

individual level.   

The statistical framework of this modeling scheme is based on the approach proposed by Montero et al. 

(2017). The difference of our proposal (MFA-LVR approach) with respect to the referred approach (ACP-
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LVR approach) is in the method used in order to construct the latent variables at the macro level. Montero et 

al. (2017) proposed to employ a combination of two methods, Multivariate Multilevel Models and Principal 

Component Principal; while here recommend to use a particular technical: Multilevel Factorial Analysis. We 

show, through an example with real data, that to use this method would be likewise an appropriate way to 

obtain latent variables at the macro level, which also can be interpreted as synthetic indicators of the 

differences of the images between individuals. 

Although the study suggests a better classification of the patients who survived the ICH, using the MFA-LVR 

approach, the interpretation of the data must take into account the relatively small sample size and the 

resulting limitations in terms of statistical power. Other potential limitations should also be considered, such 

as the non-inclusion in the model of other important clinical variables that may also be considered responsible 

for patient mortality. In this sense, future investigations with larger sample sizes and some numerical 

simulation could contribute to conclusions more consistent.  

However, from this perspective, we think that by making explicit the assumptions on which method to use in 

order to construct the latent variables, both approaches discussed in this article could be integrated into a 

general strategy for analyzing micro-macro situations where the interest of the research lies combining 

morphometric characteristics of CT images and characteristics of patient to evaluate possible risks factors in 

the patient population. On the other hand, the study of the conditional probability distribution allows identifies 

groups or characteristics of the patient`s population where the morphometry of the images can influence of 

vital manner in the rates of outcome of the study population.    

The decision of whether to choice one strategy or another will be mainly focus on the knowledge of the 

methods and the functional relationship between the outcome variable and the different covariates available in 

each study, as well as the available software programs. 

In summary, we think that beyond the limitations presented, the micro-macro multilevel modeling strategies 

discussed here may enrich the statistical analysis of CT image data that will lead to improved efficacy in 

clinical diagnosis.  In particular, we consider that the general methodology outline in this article has the 

following advantages: a) It is possible to include one parsimonious latent variables model that facilitates 

interplay between images and individuals. b) It allows making inferences at the individual level using the 

information available at the image level. c) Balanced designs are not a requirement. d) We can chose freely 

between two methods in order to construct the latent variables. 

Further methodological developments are necessary in order to fit more sophisticated micro-macro models for 

TC data. However our strategy may be viewed as useful exploratory tool to measure the morphometric effects 

of multiple images on a clinical outcome variable (e.g. survived) of specific patients.  
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