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ABSTRACT 

In the present investigation, a methodology has been developed for obtaining Approximately Optimum Strata Boundaries 

(AOSB), appropriate for surveys involving single study variable (Y), on the basis of two auxiliary variables (X and Z) 
closely related to the study variable. For theoretical development, regression model has been considered as Y = C (X, Z) + 

e , where C (X, Z) is a function of X & Z and ‘e’ is error term. Minimal equations have been obtained, under certain 

assumptions, by minimizing the variance of the estimation variable. Due to implicit nature of these equations, a Cum 

 3
1 ,D x z rule has been proposed for finding out AOSB. Comparisons have been made empirically, using certain 

density functions, with cube root method due to Singh and Sukhatme (1969) for single auxiliary variable. It  showed 

remarkable gain in efficiency in case two auxiliary variables are used as the basis of stratification. 
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RESUMEN 

En la presente investigación, una metodología ha sido desarrollada para obtener  Fronteras Aproximadamente Óptimas de 

los Estratos (Approximately Optimum Strata Boundaries, AOSB), que sean  apropiadas para encuestas en el estudio de una  

variable (Y), sobre la  base de tener dos variables auxiliares (X y  Z) relacionadas fuertemente con la bajo estudio. Para el 
desarrollo teórico, el modelo de regresión considerado fue Y = C (X, Z) + e , donde C (X, Z) es una función de X & Z y  ‘e’ 

es el término del  error. Ecuaciones minimales han sido obtenidas bajo ciertas asunciones, minimizando  la variancia de la   

variable de estimación. Debidos a la naturaleza de estas  ecuaciones, una regla  Cum  3
1 ,D x z  ha sido propuesta 

para hallar las AOSB. Comparaciones han sido levada a cabo empíricamente, usando  ciertas  funciones de densidad,  
mediante el método de la raíz cúbica debida a Singh and Sukhatme (1969) para una sola variable auxiliar. Se muestra que 

una ganancia en  eficiencia notable en el caso de las dos variables auxiliares son usadas como base para la estratificación. 

 
PALABRAS CLAVE: Estratificación Òptima , Ecuaciones Minimales, Fronteras de los Estratos  

 

1. INTRODUCTION 

 

In stratified random sampling, a proper choice of strata boundaries is one of the important factors as 

regards to the efficiency of estimator of the population characteristic under study. Dalenius (1950) first 

considered the univariate problem treating estimation variable itself as stratification variable. Singh-

Sukhatme (1969) provided some approximate solutions for the strata boundaries, by using single auxiliary 

variable as the stratification variable, under optimum and proportional allocations, Allende-Bouza (1987) 

proposed a method for optimum stratification in the multivariate case using mathematical programming 

algorithms. Lavallee-Hidiroglou (1988) proposed an algorithm to construct stratum boundaries for a 

power allocated stratified sample of non-certainty sample units. Niemiro (1999) proposed a random 

search method in the stratification problem but the algorithm did not guarantee that it leads to global 

optimum. Furthermore, it would go wrong in a case of a large population, as it requires too many iteration 

steps (see Kozak 2004). Rizvi et al. (2002) developed a method for obtaining approximately optimum 

strata boundaries (AOSB) on an auxiliary, closely related with the study variables, appropriate for surveys 

involving more than one study variable. Danish et al. (2017) proposed a technique for one study variable 

having an auxiliary variable with varying cost for each unit. Presuming the fact that the efficiency of the 

estimator may be improved by using more auxiliary information, in the present study a method has been 

developed for obtaining AOSB for an estimation variable using two auxiliary variables as the basis of 

stratification. 
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Let there be a finite population consisting of N units, for which it is required to estimate the total or mean 

for the characteristic Y under study, using simple random sampling technique. In order to have this, we 

divide the whole population into L × M strata on the basis of two auxiliary variables, say, X and Z, such 

that the number of units in the (h , k)
th 

stratum is Nhk  so that 

1 1

L M

hk
h k

N N
 

  

A random sample of size ‘n’ is to be drawn from the whole population allocating nhk units to the (h , k)
th 

stratum such that 

1 1

L M

hk
h k

n n
 

   

Let the value of population units in the (h, k)
th  

stratum be denoted by 
hki

y  (i = 1, 2, …, hkN ) so that the 

population total is  

1 1 1

hk
NL M

hki
h k i

Y y
  

     

The unbiased estimator of population mean Y   is given by 

 
1 1

L M

hkst hk
h k

y yW
 

   

Where, hk
hk

N
W

N
  denotes the stratum weight and  

1

1 hk

hkihk
ihk

n
yy

n 

   is the sample mean for the (h , 

k)
th  

stratum. The sampling variance of the estimator 
st

y  is obtained as: 

    
2 2

1
hk hky

hkst
h k hk

W
V y f

n


    

Where, hk
hk

hk

n
f

N
  denotes the sampling fraction and 

2

hky represents the population variance for the 

character Y in the  ,
th

h k  stratum defined as  

 
2

2

1

1 hk
N

hky hki hk
hk i

y y
N




   

hk
y being the population mean of all the hkN  units in the  ,

th
h k  stratum. 

 

 If the finite population correction (f.p.c) is ignored in each stratum, the variance can be 

expressed as 

 
2 2

hk hky

st

h k hk

W
V y

n


  

2. METHOD OF OPTIMUM ALLOCATION 

 

In this method, the sample sizes hkn are determined in such a way that for the given total sample size 

(which amounts to fixed total cost when the cost of observing a unit in each stratum is same) the variance 

of the estimator st
y  is minimized. Thus, we have to minimize 

 
2 2

hk hky
st

h k hk

W
V y

n


  

Subject to the constraint   
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1 1

L M

hk
h k

n n
 

                    (2.1) 

We select hkn  and the Lagrangian multiplier ‘ ’ so as to minimize the function  

 

2 2

,
hk hky

hk hk
hkh k h k

W
n n n

n


  

 
   
 
 

   

Differentiating it partially with respect to hkn  and equating to zero, we get 

                                 

 ,hk
hk

n
n

 





 

2 2

2
0

hk hky

hk

W

n


     

 

This gives, that the sample size is given by 

  
hk hky

hk

W
n




  

Using it in equation (2.1), we have  

hk hky

h k

W
n




  

Therefore, the optimal strata`s sample sizes are:

 

                                 

hk hky
hk

hk hky
h k

W
n n

W









  

Thus, for optimum method of allocation the variance of the estimator becomes  

                                    
 

2

hk hky
h k

st opt

W

V y
n


 
 
 
 


                                                              (2.2)  

 

3. VARIANCE EXPRESSION 

 

Let the regression model of Y on X and Z be given as Y = C (X, Z) + e, where C (X, Z) is a function of X 

and Z and ‘e’ is error term such that 

  0
,

eE
x z

 .   and     , 0
,

eV x z
x z

   ,  ∀   ,x a b    ,z c d  ,  b-a<∞  ,c-d<∞ 

If the joint density function of (Y, X, Z) in the super population is f(y, x, z), joint marginal pdf of X and Z 

is f(x, z) and the marginal density function of X and Z are f(x) and f(z), respectively, then under above 

regression model, we have the weight of the   ,
th

h k  stratum as 

 

11

,
h k

kh

hk

x z

W f x z x z

x z 

     

   

11

1
, ,

h k

kh

hky hkc
hk

x z

c x z f x z x z
W

x z

 



       denotes the mean of the  ,
th

h k stratum 
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 and  
2 2
hky hkc hk   , where  1 1, , ,h h k kx x z z   are the boundary points of  ,

th
h k

stratum and 
hk

 is the expected value of the function ( , )x z  in the  ,
th

h k stratum and 
2

hkc is 

given as 

     

11

22 21
, ,

h k

kh

hkchkc
hk

x z

c x z f x z x z
W

x z

 



    
 

Using these relations, the variance for the estimator st
y  as given in (2.1) and (2.2) can be expressed in 

terms of the population parameters of the function  ,C x z  and  ,x z . The variance expression for 

the case of optimum allocation is, therefore, given by 

       
 

2
2

hk hkhkc
h k

st opt

W

V y
n

 
 

 
 
 



                                              

                       (3.1) 

 

4. MINIMAL EQUATIONS 

 

Let [xh , zk] denotes the set of optimum points of stratification on the range (a, b) and (c, d) of X and Z , 

respectively, then corresponding to these strata boundaries the variance of the estimator st
y  should be 

minimum. These points [xh, zk] are the solutions of the minimal equations which are obtained by equating 

to zero the partial derivatives of  stV y  with respect to h kx and z .Before deriving the minimal 

equations ,let us first find out the expression for some partial derivatives which will be helpful in 

obtaining the equations.  

The minimization of the variance expression as given in (3.1) is equivalent to minimization of the 

expression  

    

2
hk hkc hk

h k

W


                                                                                                                (4.1) 

Equating to zero, the partial derivative of this expression with respect to hx  ,we get  

        0hk hk ik ik
h h h hk

W h h W W i i W
x x x x

    
    

    


                   (4.2) 

where i=h+1,   2
hkc hk

h     and   2
ikc ik

i      

Note that  

 

       
1

2 21
, , ,k

k

z
h h hk h hkhkczh hk

h f x z c x z x z z
x W

    


  
          

   

Similarly, we have  

       
1

2 21
, , ,k

k

z
h h ik h ikikczh hk

i f x z c x z x z z
x W

    


  
           

  

On simplifications of (4.2) we get the minimal equations as  
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      

      

1

1

2 2

2

2 2

2

, , ,

, , ,

k

k

k

k

z
h h hkc h hkhkcz

k hkc hk

z
h h ikc h ikikcz

k ikc ik

f x z c x z x z z

f x z c x z x z z









   

 

   

 





 
       

 
 
  

 
       

  
 
  







              (4.3) 

Similarly, once again equating to zero, the partial derivative of the (4.1) w.r.t kz ,we shall get 

 

h

å
f x ,zk( ) c x ,zk( ) -mhkc

é
ë

ù
û
2

+shkc
2 +h x , zk( ) -mhkh

ì
í
î

ü
ý
þx

h-1

x
hò ¶x

shkc
2 +mhkh

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

=

h

å
f x ,zk( ) c x ,zk( ) -mikc

é
ë

ù
û
2

+s ikc
2 +h x , zk( ) - mikh

ì
í
î

ü
ý
þx

h-1

x
hò ¶x

s ikc
2 +mikh

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

          (4.4) 

Now, differentiating partially equation (4.4) w.r.t  hx  , we have 

f xh , zk( ) c xh , zk( ) -mhkc
é
ë

ù
û
2

+shkc
2 +h xh , zk( ) -mhkh

shkc
2 +mhkh

=
f xh ,zk( ) c xh , zk( ) -mi jc

é
ë

ù
û

2
+s i jc

2 +h xh ,zk( ) -mi j h

s i jc
2 +mi j h

        (4.5) 

where i=h+1,j=k+1,h=1,2,…,L and k=1,2,…,M 

Here, it should be noted that the system of equations that we can obtain from (4.5) gives the stratification 

points  ,h kx z  which correspond to the minimum of the variance  st opt
V y  if the function  

    
     

 

2 2' '

3

2

4 , , ,

, ,

,

x z c x z x z

x z f x z

x z

 





 


  

  

  

belongs to the class of   of functions for x in [a, b] and z in [c, d] and if 

     , , & ,x z x a b z c d    
 

then the system of equations (4.5) gives  ,h kx z  that minimizes the variance  st opt
V y . 

These equations on solving give the optimum points of stratification  ,h kx z .As the parameter involved 

(4.5) are themselves function of h kx and z ,the exact solutions are, therefore, very difficult to 

obtain. Due to this difficulty, it becomes extremely desirable to find some approximate solutions of this 

system of equations and then use some iteration procedure to obtain better approximations to  ,h kx z ,if 

so desired. 

Lemma 1: If the function  ,ijI x z  is defined as  

       2 2

1 1
1 1 2 1 1 2 1 2, ,

iz x j
ij z x

I x z t x t z f t t t t          , 1 2 1 2&x x z z    

where   1 2,f t t  is a function of two variables, then 

  
        

          

1 1 21 1 1
1 2 1 2 1 2

1 2 33 2 1
51 2 1 2 1 2

1 1 1 1 1 2
,

1
2

2! 3 1 2 2 1 3

j j ji i i

x z

ij j j ji i i
i j

xx xz zz

k k k k k k
f f f

i j i j i j
I x z

k k k k k k
f f f O k

i j i j i j

    

    
 

 
  
      
 

  
     
       
      

(4.6) 
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where  
2 2 2

1 2 2 2
1 2 1 21 2

, , , , , ,x z xx zz xz
f f f f f

f t t f f f f f f
t t t tt t

    
     

    
 

and k1 , k2 denote the ranges of 1
st
 and 2

nd
 strata. 

Lemma 2: Let  ,x z  denotes the conditional expectation of the function  1 2,t t ,so that 

  
   

 

2 2

1 1

2 2

1 1

1 2 1 2 1 2

1 2 1 2

, ,

,

,

z x

z x

z x

z x

t t f t t t t

x z

f t t t t






 



 

 

 
  

Then, the series expansion of  ,x z at point (t1 , t2 )is given by 

 

 
 

 

     
 

  

' '''
2

1 2 1 2

2' '' 2 ''' '
3

1 22

4
1 2

2
1

2 12

,
12

x z

xx zz xz x z x z

f f f
k k k k

f

f f f f f f f f f f
x z k k

f

O k k



 

 

   
 



   
     

  
  

            
  
  

 
  
 
                            

(4.7) 

 

Lemma 3: If  2 ,x z  denotes the conditional variance of the function  1 2,t t  in the interval (x, z) 

,so that       
22 2, , ,x z x z x z      . Then, 

sh
2 x , z( ) =

k1 + k2( )
2

12
h'æ

è
ç

ö

ø
÷
2

1+
h''

h'
k1+ k2( ) +O k1 + k2( )

2
é

ë

ê
ê

ù

û

ú
ú

=
k( )

2

12
h'æ

è
ç

ö

ø
÷
2

1+
h''

h'
k( )

1
+O k( )

2
é

ë

ê
ê

ù

û

ú
ú

              (4.8) 

where    1 2
k and k  denote all 

,

ik s  with power ‘1’ and ‘2’ respectively. 

Note: If we take the function of    1 2 1 2, ,t t t t   ,we obtain 

 
 

 
1 2

2
22

,
, 1

12t t

k
x z O k   

                  (4.9)

 

    2
, 12 1k x z O k                                                                                                    (4.10) 

Lemma 4:  

           2 2

1 1

22
00 1 2 1 2 1 1 1 1 2, , , , , 1

z x
c z x

I x z x z x z t t f t t t t n O k k          
                (4.11) 

Where 
 

 

 

2 2

2 2

1 1

1 2

2 ' '
1 2

1 1 2 1 13

,

4
,

96

z x

z x
t t

k k c
n f t t t t

 



     
 
 

   

 

5. MINIMAL EQUATIONS AND THEIR APPROXIMATE SOLUTIONS 

 

In this section, we shall find the series expansion of the system of equations given in (4.5) about the point

 ,h kx z , the common boundary points of  ,
th

h k   and  1, 1
th

h k   strata in order to obtain their 

approximate solutions. To find the expansion of (4.5) we shall use the relations obtained in different 
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Lemmas by replacing  ,x z by     1 1, , , .h h k kx x z z  Let us consider the development of right 

hand side. The corresponding expansion for the L.H.S of the equation can be obtained from the expansion 

of the right hand side by merely changing the signs of the coefficients of odd powers of 
i jk and k

,where 1i h hk x x   and 1j k kk z z  , although the same result will be obtained if we develop 

the expansion of this side independently. 

We have (4.6.4) after replacing x and z by 1h hx and x  , respectively, we get 
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' '' ' 2 ''' ' 2'

42 3
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2
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Similarly, replacing x and z by 1k kz and z  respectively, we get 
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where the functions c, f and their derivatives like , , ,x z xx zzf f f f etc are evaluated at 

h kx and z .Therefore, we get 
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                                  (5.1) 

where 
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Also (4.8) can be written as  
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                                                      (5.2) 

Adding (5.1) and (5.2) ,we get  
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Also from (4.7) ,we can write as  
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where, on the right hand side of this equation the functions ,f  and their derivatives are evaluated at 

point hx .However, if they are evaluated at kz it would take the form as  
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Thus, we get 
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                                (5.3) 

Also, we have   
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so that 
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where 
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Now, using the expression in (5.3) and (5.4) ,and on multiplying them, we get 
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that can be further expressed as  
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However, the R.H.S of the equation obtained in (4.3) can be expressed as 



 453 

    

 

 
2 2 2 2

2 2

1
2 2

3' ' ' '
2 4

2 3

2

, ,

4 4
2 1

9632

ikc h h ikikc

ikikc

i
i i

h

c x z x z

kc f c f
k O k

xf





   

 

   





     



  
           
    
      

                                      (5.5)

 

In the similar way the expansion of L.H.S of the same equation can be obtained. The expansion is given 

by 
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                   (5.6)

 

where the function , ,f c  f  and their derivatives are evaluated at hx . 

Similarly, we would get the results when the functions , ,f c and their derivatives are evaluated at .kz

Thus equations (5.5) and (5.6) can take the form as   
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and  
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The equation (4.3) ,after cancelling the common terms on both the sides and multiplying both sides by 

 ,hf x z ,can be put as  
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where i=h+1 and the functions , ,f c and their derivatives are to be taken at hx . 

Similarly when the functions , ,f c   and their derivatives are evaluated at kz then we have (4.3) by 

substituted values obtained in (5.7) and (5.8) as 
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(5.10) 

Combining (5.9) and (5.10) and simplifying or in other words the functions , ,f c  and their derivatives 

are evaluated at hx and kz , we get the results as  
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where  
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1, 1,2,...,
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and we have assumed that the function        1, , , , , ,f x z m x z x a b z c d    

If we have large number of strata so that the strata widths h kk and k are small then the higher 

powers of the widths can be neglected and the system of minimal equations given in (4.3) can be written 

as  
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In other words it can be written that  
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 have been neglected on both the sides of the 

equation. Since    
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       1, , , ,0 , , .x a b z c d m x z f x z    It can be seen from (5.13) that, if we have a function 

 1 1 1, , ,h h k kP x x z z  is such that 
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,then the minimal equations (4.3) 

can ,to the same degree of approximation as involved in (5.13), take the form as  

 1 1 1, , ,h h k kQ x x z z  = Constant, h=1,2,..,L,k=1,2,...,M                                 (5.15) 

The solutions to the sets of equations (4.3) as an approximation to optimum  ,h kx z can be obtained 

with the help of some iterative procedure where there approximate solutions can be taken as the starting 

points. 

Theorem 1: If the regression of the estimation variable Y on the stratification variables X and Z, in the 

infinite super population, is given by  ,y c x z e   where ‘e’ is the error term  such that

  0
,

eE
x z

     & , 0
,

eV x z
x z

     , , ,x a b z c d    with non-zero deviation 

of intervals, and further if the function    1 1 2 1 2, ,m t t f t t  ,then the system of equations (4.5) 

giving strata boundaries  ,h kx z which correspond to the minimum of  st opt
V y can be written as  



 455 

kh kk( )
2

m1 t1,t2( ) f t1,t2( )¶t1¶t2. 1+O kh kk( )
2é

ë
ê

ù

û
úz

k -1

z
kòx

h-1

x
hò

é

ë
ê

ù

û
ú

2

3
= ki k j( )

2
m1 t1,t2( ) f t1,t2( )¶t1¶t2. 1+O ki k j( )

2é

ë
ê
ê

ù

û
ú
úz

k

z
k +1òx

h

x
h+1ò

é

ë

ê
ê

ù

û

ú
ú

2

3  

while neglecting the terms of order 
     

4

, , , h j

Sup
O k k

a b c d

 
 
 

,these equations can be replaced by 

the approximate system of equations 

     
1 1

2
1 1 2 1 2 1 2, ,h k

h k

x z
h k x z

k k m t t f t t t t
 

   =Constant 

or equivalently equal to  

 1 1 1, , ,h h k kQ x x z z  =constant 

where  

 
 

 

2 2' '

1 3

2
,

4
,

x z

c
m x z

 



 
 
 
 
 
 

  

 1

1

h h h

k k k

k x x

k z z





 

 
  

         
1 1

2 2
1 1 1 1 1 2 1 2 1 2, , , 1 , ,h k

h k

x z
h h k k h k h k x z

Q x x z z O k k k k m t t f t t t t
 

 
    
      

1, 1,2,...,

1, 1,2,...,

and

i h h L

j k k M

  

  

 

From Lemma 4 with x and z replaced by    1 1, ,h h k kx x and z z   
respectively, so that 

 00, ,h k hkk k k k and I x z W   , we obtain 

   
 

     
1 1 1 1

2

2
2

1 2 1 2 1 2 1 1 2 1 2 1 2, , , , 1
96

h k h k

h k h k

hk hkhkc

x z x zh k
h kx z x z

W

k k
t t f t t t t m t t f t t t t O k k

 


   



       
     

  

Now, taking summation over all strata we have  
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2

2
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96
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h ka c x z
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 



       
  



   

 

Since it is  obvious that    1 2 1 2 1 2, ,
b d

a c
t t f t t t t    is a constant because of interval defined for 

the variables. So, minimization of 
2

hk hkhkc
h k

W   is equivalent to minimization of 

 
     

1 1

2
2

1 1 1 2 1 2 1 2, , 1
96

h k

h k

x zh k
h kx z

h k

k k
d m t t f t t t t O k k

 

    
  

   as the first term is constant 

in the above equation. Thus, the Theorem 1 can be established alternatively to a large extent by 

minimizing the function 1d as discussed by Ekman (1960). 
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Thus, we find that if the function    1 , ,m x z f x z
 
belongs to the class Ω then the minimum value of 

2
hk hkhkc

h k

W    and therefore  st opt
V y exists and the set of strata boundaries

 ,h kx z , corresponding to the minimum, are the solutions of the system of equation (4.5) or 

equivalently of (5.11). These conditions in that capacity are extremely hard to understand and accordingly 

it is required to discover some approach to conquer this trouble .It is done by replacing these system of 

equations by other system of equations which are comparatively easier to solve but are only 

asymptotically equivalent to the exact minimal equations. The error factor is introduced because we 

neglect the terms of higher powers of strata widths which is of course justifiable if the number of strata is 

large.  These option arrangement of conditions were given in (5.14) and (5.15) We have obtained these 

systems of equations after neglecting the terms of order     4 4
h kO Sup k k O m where 

    
 

, , , h k

Sup
m k k

a b c d

 
  
 

 on both sides of the equation (5.11).If the number of strata is large and 

therefore terms of order  4O m are quite small, the error involved in the approximate systems of 

equations is expected to be quite small and the set of stratification points  ,h kx z obtained from them 

shall be quite near to the optimum values. 

 

6. CUM  3
1 ,D x z    RULE 

If the function      1 1, , ,D x z m x z f x z  where 

 
     
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2 2' '

1 3

2
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x z x z c x z
m x z

x z

 




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  

 

is bounded and its first derivative exists for all x in  ,a b and z in  ,c d ,then for a given value of L and 

M taking equal intervals on the cumulative cube root of  1 ,D x z will give AOSB  ,h kx z . 

Remarks 

1. Let  ,c x z x z    
 
then     ' ', ,c x z and c x z   by differentiating 

partially w.r.t. x and z  , respectively, and ultimately  

 
     

 

2 2' '

1 3

2
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,

x z x z c x z
m x z

x z

 






  

=constant .Therefore, for such a case the proposed rule 

reduces to the  3 ,Cum f x z . 

2. Let   , ,c x z x z      then if either  ,c x z x    or  ,c x z z   , then

 
     

 

 
     

 

2 2 2 2' ' ' '

1 13 3

2 2

4 4x x c x z z c z
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x z

   

 

 
 

      

 

reduces to the method proposed by Singh and Sukhatme (1969) for single auxiliary variable. 
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3. For any distribution and given number of strata, the AOSB  ,h kx z will remain unchanged with 

respect to the form of conditional variance  ,x z , however, the efficiency of stratification as compared 

to no stratification will be changed with the choice of various forms of conditional variance. 

 

7. EMPIRICAL STUDY 

 

We shall now demonstrate empirically the effectiveness of the proposed method of findings the set of 

AOSB. The linear regression line Y on X and Z have been taken as y x z e       . Two forms 

conditional variance function  ,x z  viz.  ,x z   and  ,x z xz   have taken, where 

and   are constants. 

The origin is deliberately excluded from the range of the auxiliary variables X and Z otherwise 

 ,x z xz  we have  1 ,m x z    at x = 0, z = 0 and the function    1 , ,m x z f x z  in that case 

does not belong to the class Ω of functions. We could have also avoided this difficulty by taking some 

other suitable forms to the functions. For the empirical studies under optimum allocation, let us assume 

values of 0.0214, 0.00437    which are quite small so that the effect of taking  ,x z 

and  ,x z xz  is negligibly small. 

In order to obtain AOSB let us assume that the correlation coefficient (  ) between X and Z is equal to 

0.65 For this purpose the following density functions of the stratification variables X and Z have been 

considered. 

Case I: The auxiliary variable X follows standard normal distribution with pdf as 

 

2

21
, 0

2

x

f x e x



   

and the variable Z also follows standard normal distribution with pdf as  

 

2

21
, 0

2

z

f z e z



 

 

In order to obtain the OSB when both the variables are standard normally distributed let us take the values 

of regression coefficients 0.65   and 0.57  .For obtaining total 16 strata, 4 along the x-variable 

and 4 along the z-variable using the proposed rule Cum  3
1 ,D x z   by solving it in Mathematica 

software assuming the distribution of X and Z is truncated at x=6 and z=4 respectively, we get the 

stratification points as below: 

Table 7.1: OSB when the auxiliary variables X and Z have both standard normal distribution and 

when  ,x z   

 

Table 7.2: OSB and Variance when the auxiliary variables are both standard normally distributed 

having  ,x z   

 

 

 

Z 

4.0000 

 

0.8531 

 

 

0.5779 

 

0.3347 

     

    

    

    

         0.0000           0.5021                    0.8669              1.3507           6.0000                

X 



 458 

OSB  ,h kx z  Variance Cum 3
1( , )D x z Rule 

Variance 

(Singh and Sukhatme 1969) 
% R.E. 

(0.5021,0.3347) 

(0.8669,0.3347) 

(1.3507,0.3347) 
(6.0000,0.3347) 

(0.5021,0.5779) 

(0.8669,0.5779) 
(1.3507,0.5779) 

(6.0000,0.5779) 

(0.5021,0.8531) 
(0.8669,0.8531) 

(1.3507,0.8531) 

(6.0000,0.8531) 
(0.5021,4.0000) 

(0.8669,4.0000) 

(1.3507,4.0000) 
(6.0000,4.0000) 

0.16254785 0.396418 243.8867 

 

Table 7.3: OSB when the auxiliary variables X and Z have both standard normal distribution 

respectively and when  ,x z xz   

Table 7.4: OSB and Variance when the auxiliary variables are both standard normally distributed 

having  ,x z xz   

OSB  ,h kx z  

Variance 

(Cum 3
1( , )D x z Rule) 

Variance 

(Singh and Sukhatme 1969) 
% R.E. 

(0.6024,0.4216) 
(0.9257,0.4216) 

(1.6298,0.4216) 

(6.0000,0.4216) 
(0.6024,0.6729) 

(0.9257,0.6729) 

(1.6298,0.6729) 

(6.0000,0.6729) 

(0.6024,1.2743) 

(0.9257,1.2743) 
(1.6298,1.2743) 

(6.0000,1.2743) 

(0.6024,4.0000) 
(0.9257,4.0000) 

(1.6298,4.0000) 

(6.0000,4.0000 

0.15942873 0.428619 268.84677 

 

Case II: Let us consider the case when of X follows uniform distribution with pdf  

 
1

,f x a x b
b a

  


 

and Z follows exponential distribution with pdf  

 

 

 

Z 

4.0000 

 

 

1.2743 

 

 

0.6729 

 

 

0.4216 

     

    

    

    

         0.0000              0.6024                    0.9257              1.6298                6.0000   

X 
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  1, 0zf z e z    

In order to obtain OSB for the above pdf let us suppose that the variable x is defined in [1,2] and z in [1,6] 

and assume that values of and   be 0.56 and 0.72, respectively. Taking the above pdf’s for 

constructing stratification points using Cum 3
1( ,D x z Rule for total 6 strata i,e 2 strata along x-variable 

and 3 along z-variable, using Mathematica software for solving the function , we get 

Table 7.5: OSB and Variance when the auxiliary variables are uniformly and exponentially 

distributed having when  ,x z   

OSB 

 ,h kx z  

Variance 

Singh and Sukhatme (1969) 

Variance 

Cum 3
1( , )D x z Rule 

% R.E. 

(1.46099,1.77003) 

(2.00000,1.77003) 

(1.46099,4.07294) 

(2.00000,4.07294) 

(1.46099,6.00000) 

(2.00000,6.00000) 

0.1553 0.096473 160.9776 

 

Table 7.6: OSB and Variance when the auxiliary variables are uniformly and exponentially 

distributed having  ,x z xz   

OSB 

 ,h kx z  

Total Variance 

(Singh and Sukhatme 1969) 

Total Variance 

(Cum 3
1( , )D x z Rule) 

% R.E 

(1.5000,2.7856) 

(2.0000,2.7856) 

(1.5000,3.17044) 
(2.0000,3.17044) 

(1.5000,6.0000) 

(2.0000,6.0000) 

0.173 0.0627351 275.7626 

 

8. CONCLUSION 

The proposed cumulative cube root rule can be used for determination of strata boundaries for single 

estimation variable using two auxiliary variables as the basis of stratification under optimum allocation. 

Furthermore, the percent relative efficiency of the proposed method over the method developed by Singh 

and Sukhatme (1969) for univariate case, shows that the proposed method is more efficient than Singh 

and Sukhatme (1969).The proposed rule can be applied in actual practice when the frequency 

distributions of the auxiliary variables are available and the form the conditional variance function is 

known from the previous experience. 
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