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ABSTRACT 

Eggs are most fundamental and important foodstuff in everyday life for all developed and developing countries. It is not 
sufficient only to produce and transport eggs at a reasonable cost but arrangements must be made to ensure that the eggs reach 

the consumers well in time.In between the two extremes of minimization of eggs shipping cost and minimization of eggs 

shipping time, there exist a number of situations where an eggs transportation system decision maker would like a partial 
trade-off on shipping cost to attain a certain degree of shipping time advantages.From laying to the final destination, more 

eggs are broken during shipping than in any other step; therefore, losses due to eggshell breakage are greatest during shipping. 

In this paper, an algorithm and its underlying theory is developed to solve eggshell breakage restricted bi-criteria eggs 
transportation problem. This paper discusses a more realistic and general assumption that the eggs shipping time of bi-criteria 

eggs transportation problem depends on the quantity of the eggs transported and is an increasing piecewise constant function. 

The algorithm is also supported by a real life eggs shipping problem of Tamil Nadu, India. 
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RESUMEN 

Los huevos son un alimento muy fundamental eimportanteen la vida diaria para todos los países en desarrollo. No es 

suficiente solo producir y transportar los huevos un razonablecosto, sino asegurar que su  manejo garantice  hacerlesllegar a 

losconsumidores en tiempo. Entre  los extremos de minimizar el costo del traslado de los huevos y hacerlo con el tiempo, hay 
una serie de situaciones donde para el sistema de transporte el decisor querrá hacer acuerdo parcial entre el costo de 

transporte, para obtener un cierto grado de ventajarespecto al tiempo de arribos. Hasta la llegada a su final destino, más 

huevos se rompen durante el traslado que en ningúnotro paso, por tanto, las pérdidas debido a roturas son mayores durante el 
traslado. En este paper, un algoritmo y su teoría son desarrollados par resolver el problema de la rotura de los huevos 

restringido a un problema  bi-criterial del problema de transporte de huevos. El paper usa la  asunción másrealista y general: 

de que el  traslado de huevos y el tiempo de un problema de transportebi-criterialdepende de la cantidad de 
huevostransportados y que es una función creciente a saltos constante. El algoritmo es tambiénilustrado por la solución de un 

problema del traslado de huevos de Tamil Nadu, India. 

 
PALABRAS CLAVE: problema de transportación de huevos, bi-criterial, acuerdo, rotura de huevos.  

 

1. INTRODUCTION  

 

Eggs are most fundamental and important foodstuff in everyday life for all developed and developing 

countries because it contains equal quantity of animal protein as pork and poultry meat, about two-thirds that 

of cheese and roughly three-quarters that of beef. India is the fifth largest producer of eggs in the world and 

the rate of consumption is estimated to triple by the end of the year 2020. With increasing urbanization, eggs 

will need to be transported in good condition from egg producers and farm owners to distant cities and 

distributed through wholesalers, wholesalers-cum-retailers and retail outlets conveniently situated near 

consumers. The eggs are shipped in egg cartons or trays, generally by big lorries or cargo trucks. The study 

conducted by Omar et al. [15] identified some problems of layer farming and marketing of egg, and suggested 

measures for solving these problems. The authors also noticed that there was a wide seasonal price variation 

of egg in the selected markets due to change in demand and supply at different times of the year. 

Most of the real world shipping problems appear with two objectives and are known as bi-criteria 

transportation problem. When a transportation system decision maker considers a bi-criteria transportation 

problem with two objectives, say minimization of total shipping cost and minimization of shipping time, one 

fails to get an optimum solution satisfying both the objectives. In such interesting situations, one considers for 
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a sequence of solutions termed as trade-off solutions. Algorithms for the trade-off transportation problem 

have been provided by (Prakash et al. [17]; Das et al. [3]; Khurana[10]; Chakraborty and Chakraborty[1]). 

The weighted sum method and epsilon constraint method are used for multi objective optimization problems. 

Both these methods have certain disadvantages also and have been stated by different researchers. According 

to Pike-Burke [16] most methods [e.g. weighted sum method, epsilon-constraint method] produced solutions 

that were lexicographically optimal for one of the objective functions, only the game theoretic approach 

produced a compromise solution, but this came at the cost of solving a non-linear program. Therefore, it 

would be useful to produce methods for generating compromise solutions that are more computationally 

efficient. In multi-objective optimization, different methods are often used to generate a set of efficient 

solutions from which the decision maker can choose. Hence methods that are able to produce the entire set of 

efficient solutions [such as the two-phase method for multi-objective combinatorial optimization problems 

(Ulungu E.L. and Teghem [21])] are preferable and more of these methods should be investigated. Each of the 

methods discussed has advantages and disadvantages and a lot of them can be adapted for specific problems. 

However, there is still no general `best' method that can be used to solve multi-objective optimization 

problems. In the weighted sum method if the positivity requirement on iw is weaken to iw  greater or equal to 

0 there is a potential to get only weakly efficient solutions (Marler and Arora [12]). The weighted sum method 

is simple to implement but the results obtained are highly dependent on the weights used, which have to be 

specified before the optimization process begins. Additionally, the weighted sum method is not able to 

represent complex preferences and in some cases will only approximate the decision maker’s preferences. The 

one issue with the Epsilon constraint approach is that it is necessary to preselect which objective to minimize 

and the epsilon j values. This is problematic as for many values of epsilon; there may not be a feasible 

solution (Pike-Burke [16]). 

According to Yu and Solvang [22] weighted sum is an a priori method, which means the weight of each 

objective function must be pre-determined and the optimal result obtained is significantly affected by the 

given weights. Therefore, the weighted sum is not an effective method when the relative importance of each 

objective is unclear or cannot be pre-determined by decision makers, and which is frequently encountered in 

the system planning of hazardous waste management. For posteriori decision-making, the weighted sum is 

neither able to generate evenly distributed pareto solutions nor a complete set of points at the pareto frontier. 

The authors may point out that more details on the weaknesses of the weighted sum method are given by (Das 

and Dennis [4]). According to Chirop and Zammit-Mangion [2], in most cases, the weighted sum method is 

unable to capture the middle ground of the pareto set, rendering it fairly useless as a means of studying the 

trade-off between conflicting objectives.  

According to Mavrots[13], the value selected for epsilon is determined by payoff matrix, and it has great 

influence on the pareto frontier generated. The payoff matrix calculated by conventional epsilon-constraint 

method may lead to dominated or weakly efficient solutions which result in an unevenly distributed pareto 

optimal curve. 

Bi-criteria eggs transportation problems are very important from practical point of view because they take 

care of those real life eggs transport planning and control problems from the economic world which have the 

mathematical structure of eggs transportation problems but are characterized by the existence of two objective 

functions: minimization of total eggs shipping cost and minimization of eggs shipping time. This paper 

presents minimization of shipping cost and minimization of shipping time in the objective function of a bi-

criteria eggs transportation problem. The majority of the widely quoted authors (Glickman and Berger [6], 

Srinivasan and Thompson [18], Derigs [5], Srinivasan and Thompson [19], Gupta [8]) have worked on 

shipping cost and shipping time objective functions in bi-criteria transportation problem. Gupta and Arora [7] 

developed an algorithm to find optimum cost-time trade-off pairs in a fractional plus fractional capacitated 

transportation problem. Khurana and Arora [11] developed an algorithm to find an efficient cost-time trade 

off pairs in a fixed charge bi-criterion quadratic transportation problem. 

From the viewpoint of a developing economy like India, cost considerations are important in eggs 

transportation; hence the traditional transportation cost view is incorporated along with eggs shipping time. 

Services for the transportation of eggs by road are in particular demand, as road transport guarantees the 

fastest and cheapest delivery. Eggs being a perishable commodity, shipping time and shipping cost 

considerations are very relevant and shipping time of eggs should be minimized to avoid substantial quality 
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deterioration, contamination and price losses. Jacobs et al. [9] presented a study and investigated the effects of 

transportation duration and parental flock age on chick welfare, productivity and quality. The main aim of the 

research presented by Mertens et al. [14] was to monitor the percentage of eggshell breakage in four different 

production and logistic chains, from laying to final destination, to reveal critical points at which breakage 

occurs. Thompson and Hamilton [20] stated that most eggs are broken during transportation, rather than any 

other step during processing and distribution. 

After the eggshell breakage or partial breakage, the shells of damaged eggs present in egg cartons or trays are 

a perfect foil for bacterial infections and the total value of such eggs is zero and it is a loss. Hence it is 

necessary to restrict the eggshell breakage to a known specified level. In this paper, an algorithm and its 

underlying theory is developed to solve eggshell breakage restricted bi-criteria eggs transportation problem. 

The paper also discusses a more realistic and general assumption that the eggs shipping time )( ijij xt of bi-

criteria eggs transportation problem depends on the quantity 
ijx of eggs transported and is an increasing 

piecewise constant function. The algorithm generates all eggs shipping cost-time solution pairs that are pareto 

optimal with respect to the eggs shipping time and eggs shipping cost and for demonstration of the efficacy of 

the algorithm, a real life eggs shipping problem of Suguna Poultry Farm, Tamil Nadu (a state in India) is 

taken.  

 

2. MATHEMATICAL FORMULATION 

 

The mathematical formulation of eggshell breakage restricted bi-criteria eggs transportation problem [P1] is 

as follows: 

[P1]  Minimize 

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


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          0ijx ,  for all i and j             (6) 

also                      
ijij Vx  ,   for Jji ),(             (7) 

     ),,2,1;,,2,1;,,2,1( PkNjMi    
where 

ia
 
is the quantity of eggs available at the thi  poultry farm and 

jb is the quantity of eggs required at the 

thj  
market. One unit of the egg’s cartons or tray contains 

ijkf
 

units of P  breakages of eggshell

),,2,1( Pk   when it is transported from poultry farm i  to market j . 
jkq

 
is the units of highest amount 

of eggshell breakage that can be received by the market j , and ijx is the amount of the eggs commodity 

transported from poultry farm i  to market j . ijc is unit shipping cost of eggs from poultry farm i to market j . 

Here )( ijij xt is the shipping time of quantity 
ijx  of eggs commodity transported from poultry farm i  to 

market j and is dependent on 
ijx .It is an increasing piecewise constant function and that the eggs commodity 

interval ],0[ ijV of possible values of 
ijx is divided into a number of eggs commodity subintervals such that 
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)( ijij xt is constant in each subinterval. For each poultry farm i  to market j , the eggs commodity interval

],0[ ijV is divided into eggs commodity subintervals as follows: 

ij
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and                                      e
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Here 
ijV is the eggs capacity limitation from each poultry farm i  to market j . Also J

 
is the set of all cells 

),( ji in the eggs transportation array for which there is a capacity limitation on the eggs commodity that can 

be shipped from poultry farm i  to market j . J  is the set of all the remaining cells in the eggs transportation 

array. It is also not necessary that all the eggs commodity intervals ],0[ ijV are subdivided into the same 

number of subintervals and it is assumed without loss of generality that 

 

          
],min[ jiij baV 

     
 for all ),( ji           (11) 

In the following, the problem [P1] defined with the help of (1) through (10) will be denoted by problem R. 

Here 
ia
 
and 

jb are given non-negative numbers and  
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In this context, it may be noted that eggshell breakage restrictions equation (5) can be written as:
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0,  jkMx                                          (14) 

 

where
jkMx ,
are the slack variables. There are total NMPN  variables including slacks and 

NMPN  equations. Also a basic feasible solution will consist of 1 NMPN basic variables. 

 

3. FEASIBILITY OF EGGS SHIPPING TIME 

 

T  is said to be a feasible eggs shipping time for the problem R, if there exists a feasible solution X  for the 

problem R, with TXT )( . Z  is said to be optimal total eggs shipping cost and feasible solution X for 

problem R be cost optimal. Let ZXZ )(  
and TXT )( . The eggs shipping cost-time pair ),( TZ is called 

a solution pair. This solution pair is said to be eggs trade-off solution pair, if there exists no other ),( ** TZ

such that: 

(a)  ZZ *
 and  TT *

 

(b) ZZ *
 and  TT *

 

To check the feasibility of eggs shipping time T , consider the following commodity dependent shipping time 

based Eggs Shipping Cost Minimizing Transportation Problem (ESCMTP): 

 

(ESCMTP)   Minimize 
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subject to (3), (4), (5) and (6). 
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Here M is the usual high cost. The eggs shipping time T  is feasible time for the problem ESCMTP, if the 

ESCMTP has a feasible solution with a finite optimal value *Z , otherwise it is an infeasible time. 

 

4. ALTERING A BASIC FEASIBLE SOLUTION  

 

If a basic feasible solution is to be updated by the introduction of a non-basic variable and the removal of 

basic one then alterations can only be made to the basic variables. To determine the incoming variable, select 

the minimum difference between the true and fictitious cost: 

 

 0min  ijijji oo
 or  0min ,,,   jkMjkMjkM oo              

(18) 

 

By applying the selection rule (18), the variable 
oo jix or 

oo jkMx 
 then becomes a basic variable of the new 

basic feasible solution, and an unknown quantity   is to be added to this variable while 
rsn.

 
or  

syMn ,.  is 

added to all the basic variables 
rsx or 
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. If the new solution satisfies the original constraints, the n ’s 

must satisfy the equations set: 
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Here, 0rsn , if 
rsx is not in the basis and 0,  syMn

 
if 

syMx ,  
is not in the basis. There are 

1 NMPN  independent equations in the set (19), (20) and (21) and NMPN   unknown n ’s. It 

is therefore possible to solve this set of equations for the )1(  NMPN n ’s associated with basic 

variables in terms of 
00 jin . Furthermore, the values of the variables in the updated basic feasible solution are 

given by .rsrs nx  ; .,, syMsyM nx   .  

By choosing a suitable value of   from the following equation a new updated basic feasible solution is 

obtained:    
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5. THE ALGORITHM  
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The algorithm to solve the eggshell breakage restricted bi-criteria eggs transportation problem [P1] is divided 

in four phases: 

Phase I: Obtaining shipping cost-time trade-off solution pair ),( 11 TZ : 

In the first phase, the optimal solution 
1X  

of the eggs shipping cost transportation problem is determined. 

This is used to compute optimal total shipping cost )( 1XZ  
and feasible shipping time 

1T  
which helps in 

obtaining eggs shipping cost-time trade-off solution pair ),( 11 TZ . The stepwise description of Phase I is as 

follows: 

Step 1: Determine the optimal solution })(,){( 1,11 jkMij XXX  of the problem defined by objective 

function (1) subject to the constraints (3), (4), (5) and (6) using the following steps:  

(a) Find the initial basic feasible solution by applying the inspection method. 

(b) Determine dual variables
iu ,

jv and jkw defined such that    

 0
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
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   (for those ji, for which 
ijx is in the basis) 

  and  

0jkw                            (24) 

   (for those kj,  for which 
jkMx ,  

is in the basis) 

(c) Evaluate 
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
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  and 

                        
jkjkM w  ,

             (26) 

    for all non basic cells. 

 

(d) If all 0 ij
and 0,   jkM

, then current basic feasible solution is cost optimal, go to 

Step 1(e). Otherwise improve the solution using the equations set (19), (20), (21) and 

(22) and go to the Step 1(b). 

(e) The optimal cost solution gives the optimal eggs transportation schedule 

})(,){( 1,11 jkMij XXX   

Step 2: Compute optimal total eggs shipping cost using (27) and determine the feasible eggs shipping time 
1T  

corresponding to 
1X  

using (28) to obtain the eggs shipping cost-time trade-off solution pair ),( 11 TZ  

11)( ZXZ               (27) 

                      
}0)(max{)( 11  ijijij xxtTXT            (28) 

Phase II: Formulation of Shipping Cost Minimizing Transportation Problem (SCMTP): 

In this phase, SCMTP is formulated by determining eggs shipping time *

eT  and checking its feasibility. This 

will be done by modifying the eggs shipping cost matrix andthe eggs capacity limitation. The stepwise 

description of Phase II is as follows: 

Step 3: Determine eggs shipping time using (29) by increasing the value of e to (e +1). Go to the Step 4 to 

check its   feasibility 

            
}|{max 1
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Step 4: Modify the eggs shipping cost matrix 
ijc

 
to get 

*

ijc  using (16) and the eggs capacity limitation 
ijV to 

get 
*

ijV
 
using (17). Now using 

*

ijc  and *

ijV
 
formulate commodity dependent shipping time based 
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SCMTP. A feasible solution of SCMTP is a basic feasible solution if it is associated with a working 

basis with the property that all non basic variables 
ijx for Jji ),( are either equal to 0 or *

ijV
 
in the 

solution. Let 
eX
 
be a basic feasible solution of SCMTP associated with a working basic set  . 

Phase III: Determining optimal solution for SCMTP 

To improve the solution, 
ij

 
and 

jkM ,
 
are evaluated and finally the optimal solution is determined. The 

stepwise description of Phase III is: 

Step 5: For the solution of SCMTP given in Step 4, determine the dual variables 
iu ,

jv and
jkw

 
using (23), 

(24) and    evaluate 
ij
 
and 

jkM ,
 
for all non- basic cells from (25) and (26). 

Step 6: This step defines the first optimality criteria. There may be three conditions: 

 a) If 0ij
and *)( ijeij Vx  ,                             (30) 

 the current basic feasible solution  is optimal. Go to Step 7 to check the second optimality 

criteria. 

 b)If 0 ij  
and *)( ijeij Vx  , i.e. 0ijx , then the solution is not optimal. Go to Steps10 to 

change the status of the cell. 

 c)If 0ij
and *)( ijeij Vx  , then go to Step 8 to change the status of the cell. 

Step 7: This step defines the second optimality criteria. 

If  0ij
,    0)( eijx           (31) 

          0,   jkM
,    0)( ,  ejkMx           (32) 

then the current basic feasible solution is optimal for the second optimality criteria. 

Therefore go to Step 12 to compute eggs shipping cost-time trade-off solution pair ),( ee TZ . 

Otherwise go to Step 10 to change the status of cell. If the SCMTP has an infinite optimal value, then 

go to Step 13. 

Step 8:  For change of status, choose a non-basic cell 
eoo ji ),(
 
that violates the first optimality criteria. In this 

case, 0;),(
00
 jieoo Jji and *

oooo jiji Vx  . In this situation, the value of the objective function can 

be decreased by decreasing the value of 
oo jix
 
from its present value of *

oo jiV . Therefore an unknown 

quantity    is to be added 
*

oo jiV , i.e. the new value 
oo jix
 
will be *

oo jiV , and 
rsn. or  

syMn ,. 
 
is 

added to all the basic variables rsx or 
syMx ,
. Now if the new solution satisfies the original 

constraints, the n ’s must satisfy the equations (19), (20) and (21). 

Choose a suitable value of   from 


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            (33) 

So   should be negative and as small as possible. To select the smallest value of  , go to the Step 9. 

Step 9: The smallest value that   can have is: 

Max [(a) *

oo jiV , then 
oo jix becomes a non-basic variable whose value is 0 in the next step. Revise the 

values of all the basic variables in the  -loop by substituting *

oo jiV for  . 

(b) *

oo jiV and is 
jix  ,  

for some basic cell ),( ji  with a  entry in the  -loop. Then this 

cell is dropped from the working basic set and made a non-basic cell with a zero value. The 

variable
oo jix becomes a basic variable, with value )( *

jiji xV
oo  in the next solution. Revise the 

values of all the basic variables in the  loop by substituting the value 
jix  ,

for  . 
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(c) *

oo jiV and is )( *

, oo jiji Vx 
 for some basic cell ),( ji 

 
with a  entry  in the  -loop with 

Jji  ),( , then 
jix   

is made a non-basic variable whose value is equal to its upper bound in 

the next solution. The variable 
oo jix becomes a basic variable in its place with its value equal to 

*

oo jiV
 
in the next solution. The values of all the basic variables in the  -loop are revised by 

substituting )( *

,, jiji Vx   for  .]  

Go to the Step 5. 

Step 10: To change the status of non basic cell in the current basic feasible solution, choose a non basic cell 

),( oo ji
 
or ),( oo jkM  that violates the second optimality criteria. 

To determine entering variable, select the minimum 

]0|min[  ijijji oo    
and 0

oo jix  

          
]0|min[ ,,,   jkMjkMjkM oo  

 and 0,  oo jkMx  

By applying the above selection rule, the variable 
oo jix  or 

oo jkMx
,

becomes an entering variable. In 

this situation, the value of the objective function can be decreased by increasing the value of 
oo jix  or 

oo jkMx
,

 
from its present value of 0. 

Therefore an unknown quantity   is to be added to non-basic variable 
oo jix  or 

oo jkMx
,

while 
rsn

or 
syMn ,
 
is added to all the basic variables 

rsx or 
syMx ,
. Now if the new solution satisfies the 

original constraints, the n ’s must satisfy the equations (19), (20) and (21).Furthermore the values of 

the variables in the updated basic feasible solution are given by .rsrs nx  ; .,, syMsyM nx   . 

Choose value of   from: 

       





















syM

syM

rs

rs

n
n n

x

n

x

syM

rs
,

,

0
0

;min

,

            (34) 

If  +  entry is in the cell ),( oo ji  
or ),( oo jkM  , then go to Step 11 to select the maximum value of 

oo jix  or 
oo jkMx

, . 

Step 11: The maximum value that can be given to 
oo jix  or 

oo jkMx
,

is: 

Min [(a) 
*

oo jiV , if Jji oo ),( . Make 
oo jix into a non-basic variable whose value is equal to its upper 

bound in the next step. Revise the values of all the basic variables in the   loop by 

substituting *

oo jiV
 
for    and then erase the   loop. Keep the same working basis. 

(b)
*

oo jiV and turns out to be 
jix   

or 
jkMx  ,

,where ),( ji  or ),( jkM   
is a basic cell with 

a entry in the  -loop. Drop the cell ),( ji  or ),( jkM  from the working basic set 

and make the cell ),( oo ji or ),( oo jkM  a basic cell. Thus change the working basic set. 

Make the value of 
oo jix

 
 or 

oo jkMx
,

equal to 
jix 

 or 
jkMx  ,

, and revise the values of all the 

basic variables in the  -loop by  substituting 
jix 

or 
jkMx  ,

, for  . Make ),( ji  or 

),( jkM   
a zero valued non-basic cell. 

(c) *

oo jiV and turns out to be )( *

jiji xV
oo  for a basic cell ),( ji  , such that Jji  ),( and 

),( ji  is in the  -loop with a  entry. ),( ji  is dropped from the working basic set and 
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make it a non-basic cell at its upper bound in the next solution. Make 
oo jix  or 

oo jkMx
,

equal 

to )( *

jiji xV    
and revise the values of all the basic variables in the  -loop by substituting the 

same value for  . Make ),( oo ji
 
or ),( oo jkM 

 
a basic cell.] 

Go to the Step 5. 

 

Phase IV: Computation of ),( ee TZ for optimal solution of SCMTP 

In this phase, eggs shipping time 
eT

 
and pair ),( ee TZ is determined and its feasibility is checked. The 

stepwise description of Phase IV is: 

Step 12: If })(,){()( , ejkMeije xxX 
 
is an optimal solution of SCMTP, then compute:  

Finite total optimal eggs shipping cost = 
eZ  

and feasible eggs shipping time = 
eT  

Obtain eggs shipping cost-time trade-off solution pair ),( ee TZ and go to Step 3. 

Step 13: The eggs shipping time *

eT  is thus an infeasible shipping time. 

Step 14:  Examine the obtained eggs shipping cost-time trade-off solution pairs for redundant solutions (if 

any) i.e. those eggs shipping cost-time trade-off solutions which have the same optimal eggs 

shipping cost but different feasible eggs shipping times. Select those eggs shipping cost-time trade-

off solution pairs which have a better or smaller feasible eggs shipping time and obtain final eggs 

shipping cost-time trade-off solution pairs. 

Most of the developed algorithm in the area of bi-criteria transportation problem have the fundamental 

assumption that the transportation time required for transporting a positive amount in a route is independent 

of the actual amount transported in that route. However the author has developed a new algorithm which 

discusses a more realistic and general assumption that the eggs shipping time of bi-criteria eggs transportation 

problem depends on the quantity of eggs transported and for each route is an increasing function. To the best 

knowledge of the author, this increasing piecewise constant function has not been exploited much in 

literature. The author also noticed that in Suguna Poultry Farm of Tamil Nadu (a state in India), more eggs are 

broken during shipping than in any other step; therefore, losses due to eggshell breakage are maximum during 

shipping stage. Hence the author introduced additional eggshell breakage restrictions in the formulation of bi-

criteria eggs transportation problem. The developed algorithm generates all eggs shipping cost-time solution 

pairs that are pareto optimal with respect to the eggs shipping time and eggs shipping cost. The algorithm 

terminates when modification of total eggs shipping cost results in there being no feasible solution, that is, 

there exists an insufficient number of unprohibited routes to enable demands to be met from the available 

supplies. The algorithm indicates that a successive reduction in the eggs shipping time is there at the cost of 

an increase in the minimum total eggs shipping cost. Such decreasing (but not necessarily convex) behavior is 

a general result from application of our algorithm. 

The above algorithm terminates in a finite number of steps because only a finite number of different eggs 

shipping time are to be checked for their feasibility. The author may also like to point out the following 

advantages of the proposed algorithm: 

1. In our algorithm, the consideration of the eggs shipping cost–time trade-offs will give greater insight into 

the structure and sensitivity of the bi-criteria eggs transportation problem and subsequently to more rational 

decisions, especially in emerging economy like India where application of the proposed algorithm is relevant. 

2. In our algorithm the decision maker conducts the search by introducing upper bounds on the values of the 

eggs commodity and adding one additional eggshell breakage constraints to the original /standard 

transportation structure. Hence usual algorithms for solving transportation problems cannot be used. 

3. The construction of a sequence of solutions having different objective values as well as quality helps in 

cases not only where the eggs shipping time objective is an equally crucial factor besides cost but also when 

analyzing the practicability and sensitivity of an existing transportation situation. 

4. The algorithm takes into account the special structure of the problem and helps the decision maker by 

eliminating all the inefficient solutions. 
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5. The algorithm will prove to be useful in making the transportation problem formulated more realistic in 

logic and other application areas. 

 

6. REAL LIFE EGGS SHIPPING PROBLEM 

 

The algorithm is illustrated by the following real life eggs shipping problem of Suguna Poultry Farm, Tamil 

Nadu, India: 

The Indian egg consumers of different locations of Tamil Nadu state receive eggs through wholesalers, 

wholesalers-cum-retailers and retail outlets which in turn receive a fixed quantity of eggs from main central 

distribution warehouses. The Central Distribution Warehouses ( j ) located at four different major cities: 

Chennai, Madurai, Tiruchirappalli and Rameshwaram of Tamil Nadu state of India have different types of egg 

distribution units in their Warehouses. These multi-locational egg distribution units are receiving regular 

supply of eggs from four major branches of Suguna Poultry Farm )(i located at Nagercoil, Coimbatore, 

Namakkal and Salem of Tamil Nadu state of India. The basic goal is to generate eggs shipping cost-time 

trade-off solution pairs by determining all feasible eggs transportation schedules which minimizes the total 

eggs shipping cost ijc from four major branches of Suguna Poultry Farm i  to Central Distribution 

Warehouses j
 
and also minimizes the maximum of eggs shipping time while satisfying the extra requirement 

that the amount of eggshell breakage present in egg cartons or trays is less than a certain specific level. Also 

the eggs shipping time )( ijij xt  from four major branches of Suguna Poultry Farm i  to Central Distribution 

Warehouses j  depends on the actual amount of eggs quantity 
ijx

 
transported and is an increasing piecewise 

constant function. 

In Table 1 for each route ),( ji the eggs shipping cost ijc are written in the top left corner while the partition 

ij

e

ijij

o

ij V  ...0 1
and the corresponding eggs shipping times 

e

ijijij ttt  ...21
are shown on 

the top right corner. Availabilities ia and the eggshell breakage contents ip are listed in the last two columns 

while requirements jb  and maximum eggshell breakage contents jL are shown in the last two rows 

respectively. Let ijx be the amount of the eggs commodity transported from major branches of Suguna Poultry 

Farm i  to Central Distribution Warehouses j
 
then it is required to  

   min 
 


4

1

4

1

)(
i j

ijij xcXZ  

min )}({max)(
,

ijij
ji

xtXT   

subject to   



4

1j

iij ax ,  0ia   )4,3,2,1( i  

 





4

1i

jij bx ,  0jb   )4,3,2,1( j  

 

          jj

i

iji bLxp 


4

1

 

        0ijx ,  for all i and j  

also       ijij Vx  ,   for Jji ),(  
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Table 1: Eggs shipping problem of Suguna Poultry Farm, Tamil Nadu, India 
 
 

Central Distribution Warehouses      j  
ai 

 
pi 1 2 3 4 

S 

U 

G 
U 

N 

A 
 

 

 
F 

A 

R 
M 

 

i 

 

 

1 

C11=1   19(0-15)       

           25(15-30) 

           31(30-60) 

C12 =2    12(0-25) 

             15(25-50) 

C13 =7     16(0-15) 

              17(15-25)         

              18(25-30) 

C14 =4    7(0-30) 

           10(30-60) 

70         4 

 

 
2 

C21 =9    8(0-20) 

             9(20-30) 
           10(30-60)                         

C22 =4   11(0-30) 

            12(30-65) 
           13(65-100)                     

C23 =5    13(0-30) 

             14(30-50) 
             16(50-60) 

C24 =8    5(0-20) 

             6(20-60) 

 110    8 

 
 

3 

C31=5  20(0-32) 
           25(32-35) 

           31(35-40) 

C32 =6    17(0-30) 
             18(30-47) 

             20(47-55) 

C33 =3     17(0-25) 
              20(25-32) 

              25(32-50) 

C34 =5    3(0-30) 
             4(30-60) 

 90 
 

   6 

 

4 

C41=1    1(0-25) 

             2(25-40) 

C42 =5     8(0-30) 

             11(30-45) 

             16(45-60) 

C43 =3     17(0-20) 

              21(20-40) 

C44 =6  14(0-12) 

           16(12-30) 

 30   7 

jb  60 100 80 60  

jL
 

7 7 7 7 

 

The following starting basic feasible solution is determined by applying the Inspection method:  

11x = 40 , 12x = 25, 14x = 5, 22x = 75, 23x = 35, 33x = 35, 

34x = 55, 41x = 20, 43x = 10, 51x = 120, 54x = 70. 

Using this solution, the associated dual variables iu , jv , jkw ;4,3,2,1( i ;4,3,2,1j )1k ; ij ,

jkM , are calculated as explained in Step 1 and finally first optimal cost solution 1X
 
is obtained. 

Now First total optimal eggs shipping cost   11)( ZXZ  = 1015 

First feasible eggs shipping time    11)( TXT  = 31  

And first eggs shipping cost-time trade-off solution pair   ),( 11 TZ = (1015, 31) 

Determine eggs shipping time  }|{max 1
,,

*

 e

d

ij

d

ij
dji

e TttT = 25 

Modify the eggs cost matrix ijc to get 
*

ijc  using (16) and also modify the eggs capacity limitation ijV to get 

*

ijV using (17) to formulate ESCMTP. Use last optimal solution of problem as starting solution of modified 

ESCMTP. The solution 1X having actual amount ijx , jkMx , of eggs are shown in the bottom left corner 

while maximum amount of eggs 
*

ijV that can be transported are shown, wherever necessary, at the bottom 

right corner of the cell of Table 2. 

The modified eggs shipping cost 
*

ijc  are written in the top left corner while eggs commodity partition and the 

corresponding times are shown in the top right corner of the cell. jL and jb are displayed in the bottom two 

rows while ip and ia are shown in the marginal right column respectively. Table 3 shows the upper bound 

restriction in 1X , and after some iteration the second cost optimal solution 2X is obtained.   

 

Table 2: Eggs Shipping Problem with 1X  

 

 

Central Distribution Warehouses      j  

ai 

 

pi 
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 1 2 3 4   

 
 

S 

U
G

U

N
A 

 

 
 

F

A
R

M 

 
 

 

i 

 
 

1 

 

C11=M 
 
19(0-15)       

25(15-30) 

31(30-60) 

 

C12 =2                 

 

 
  12(0-25) 

  15(25-50) 

 

C13 =7 
 
16(0-15) 

17(15-25)         

18(25-30) 

 

C14=4              
 
 7 (0-30) 

10(30-60) 

 
 

70 

 
 

4 

x11=40  x12=25    x14=5  

 

 
2 

 

 C21 =9 

 

  8(0-20) 
  9(20-30) 

10(30-60)                         

 

C22 = 4 

 

 11(0-30) 
 12(30-65) 

 13(65-100)                     

 

C23=5 

 

13(0-30) 
14(30-50) 

16(50-60) 

 

C24=8 

 

  5(0-20) 
  6(20-60) 

 

 
110 

 

 
8 

  x22=75  x23=35    

 

 

3 

 

 C31 =5 

 

20(0-32) 

25(32-35) 
31(35-40) 

 

C32=6 

 

  17(0-30) 

  18(30-47) 
  20(47-55) 

 

C33 =3 

 

17(0-25) 

20(25-32) 
25(32-50) 

 

C34 =5 

 

  3(0-30) 

  4(30-60) 

 

 

90 

 

 

6 

 V*
31= 35  

 

 x33=35  V*
33=32 x34=55  

 

 

4 

 

 C41=1 

 

  1(0-25) 

  2(25-40) 

 

C42 =5 

 

 8 (0-30) 

11(30-45) 

16(45-60) 

 

C43=3 

 

17(0-20) 

21(20-40) 

 

C44 = 6 

 

14(0-12) 

16(12-30) 

 

30 

 

7 

x41=20    x43=10    

          

x51=120      x54=70  

bj 60 100 80 60 

Lj 7 7 7 7 

 

Now Second total optimal eggs shipping cost   22)( ZXZ  = 1130 

Second feasible eggs shipping time    22)( TXT  = 25  

 

and Second eggs shipping cost-time trade-off solution pair  ),( 22 TZ  = (1130, 25 

Table 3:  Eggs Shipping Problem with  1X  

 Central Distribution Warehouses      j  

ai 

 

pi 
1 2 3 4 

 

 
S 

U 

G 
U 

N 

A 
 

 

 
F 

A

R

M 

 

i 
 

 

 

 
1 

 

C11=M 

 

19(0-15)       
25(15-30) 

31(30-60) 

 

C12 =2                 
 

 

12(0-25) 
15(25-50) 

 

C13 =7 

 

16(0-15) 
17(15-25)         

18(25-30) 

 

C14=4              

 

  7(0-30) 
10(30-60) 

 

 
70 

 

 
4 

x11= 5  x12=25    x14= 40  

 

 
2 

 

C21 =9 

 

 8(0-20) 
 9(20-30) 

10(30-60)                         

 

C22 =4 

 

 11(0-30) 
 12(30-65) 

 13(65-100)                     

 

C23 =5 

 

13(0-30) 
14(30-50) 

16(50-60) 

 

C24 =8 

 

  5(0-20) 
  6(20-60) 

 

 
 

110 

 

 
 

8 

  x22=75  X23=35    

 

 

3 

 

C31 =5 

 

20(0-32) 

25(32-35) 

31(35-40) 

 

C32 =6 

 

  17(0-30) 

  18(30-47) 

  20(47-55) 

 

C33 =3 

 

17(0-25) 

20(25-32) 

25(32-50) 

 

C34 =5 

 

  3(0-30) 

  4(30-60) 

 

 

 

 90 

 

 

 

6 

x31=35  V*
31= 35  

 

 X33=35 V*
33=32 x34=20  

 
 

4 

 
C41=1 

 
  1(0-25) 

  2(25-40) 

 
C42 =5 

 
  8(0-30) 

11(30-45) 

16(45-60) 

 
C43 =3 

 

 
17(0-20) 

21(20-40) 

 
C44 =6 

 
14(0-12) 

16(12-30) 

 
 

 

 30 

 
 

 

7 

x41=20    X43=10    
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x51=50      x54=140  

bj        60        100         80           60 

Lj           7          7          7           7 

 

Second cost optimal solution 2X is shown in Table 4. 

Determine the next eggs shipping time  }|{max 1
,,

*

 e

d

ij

d

ij
dji

e TttT = 20 

Table 5 shows the modified ESCMTP and after some iteration the third cost optimal solution 3X is obtained. 

 

Now Third total optimal eggs shipping cost   33)( ZXZ  = 1365 

Third feasible eggs shipping time    33)( TXT  = 20  

And Third eggs shipping cost-time trade-off solution pair  ),( 33 TZ = (1365, 20) 

 

 

Table 4: Eggs Shipping Problem with 2X  

 

 

 

Central Distribution Warehouses     j  

ai 

 

pi 

1 2 3 4   

 

 

S 
U

G
U

N

A 
 

 

 
F 

A 

R 
M 

 

 
 

i 

 
 

 

 

1 

 

C11=M 

 

19(0-15)       

25(15-30) 
31(30-60) 

 

C12 =2                 

 

 

12(0-25) 

15(25-50) 

 

C13 =7 

 

16(0-15) 

17(15-25)         
18(25-30) 

 

C14 =4              

 

  7(0-30) 

10(30-60) 

 

70 

 

4  

  x12=20    x14= 50  

 

 
2 

 

C21 =9 

 

  8(0-20) 
  9(20-30) 

10(30-60)                         

 

C22 =4 

 

11(0-30) 
12(30-65) 

13(65-100)                     

 

C23 =5 

 

13(0-30) 
14(30-50) 

16(50-60) 

 

C24 =8 

 

  5(0-20) 
  6(20-60) 

 

 
110 

 

 

 
 8 

 

  x22=70  x23=40    

 
 

3 

 
C31=5 

 
20(0-32) 

25(32-35) 

31(35-40) 

 
C32 =6 

 
  17(0-30) 

  18(30-47) 

  20(47-55) 

 
C33 =3 

 
17(0-25) 

20(25-32) 

25(32-50) 

 
C34 =5 

 
  3(0-30) 

  4(30-60) 

 
 

 90 

 
 

 6 

x31=30 V*
31= 35 x32=10  x33=40 V*

33=32 x34=10  

 

 
4 

 

C41=1 

 

  1(0-25) 
  2(25-40) 

 

C42 =5 

 

 8(0-30) 
11(30-45) 

16(45-60) 

 

C43=3 
 

 

 

17(0-20) 
21(20-40) 

 

C44 = 6 

 

14(0-12) 
16(12-30) 

 

 
 30 

 

 
7 

x41=30        

        
 

 

x51=30      x54=160  

bj        60        100         80           60 

Lj           7          7          7           7 

 

The third cost optimal solution 3X is shown in Table 6. 

Determine the next eggs shipping time }|{max 1
,,

*

 e

d

ij

d

ij
dji

e TttT  = 18 
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A further modification of eggs shipping cost results in the infeasibility of eggs shipping time i.e. there exists 

an insufficient number of unprohibited routes to enable demands of Central Distribution Warehouses to be 

met from the available major branches of Suguna Poultry Farm. Therefore, the algorithm terminates. 

Table 5: Eggs Shipping Problem with 2X  

 Central Distribution Warehouses      j  

ai 

 

pi 

 
          1                                         

 
              2 

 
            3 

 
             4 

  

 

 
S 

U

G
U

N

A 
 

 

 
F 

A 

R 
M 

 

 
 

i 

 

 

 
1 

 

C11=M 

 

19(0-15)       
25(15-30) 

31(30-60) 

 

C12 =2                 
 

 

12(0-25) 
15(25-50) 

 

C13 =7 

 

16(0-15) 
17(15-25)         

18(25-30) 

 

C14 =4              

 

 7(0-30) 
10(30-60) 

 

 
70 

 

 
4  

  x12=20    x14= 50  

 

 

2 

 

C21 =9 

 

 8(0-20) 

 9(20-30) 
10(30-60)                         

 

C22 = 4 

 

11(0-30) 

12(30-65) 
13(65-100)                     

 

C23 =5 

 

13(0-30) 

14(30-50) 
16(50-60) 

 

C24 =8 

 

  5(0-20) 

  6(20-60) 

 

 

110 

 

 

 8 

  x22=70  x23=40    

 
 

3 

 
C31 =5 

 
20(0-32) 

25(32-35) 

31(35-40) 

 
C32=6 

 
  17(0-30) 

  18(30-47) 

  20(47-55) 

 

C33=M 

 
17(0-25) 

20(25-32) 

25(32-50) 

 
C34 =5 

 
  3(0-30) 

  4(30-60) 

 
 

 90 

 
 

 6 

x31=30 V*
31= 32 x32=10  x33=40    V*

33=32 x34=10  

 
 

4 

 
C41=1 

 
  1(0-25) 

  2(25-40) 

 
C42 =5 

 
  8(0-30) 

11(30-45) 

16(45-60) 

 
C43 =3 

 

 
17(0-20) 

21(20-40) 

 
C44 = 6 

 
14(0-12) 

16(12-30) 

 
 

30 

 
 

7 

x41=30     

 

   

          

x51=30      x54=160  

bj        60        100         80         60  

Lj        7           7         7          7  

 

 

 
Figure 1: Eggs shipping cost-time trade-off curve 

The set of efficient eggs shipping cost-time trade-off solution pairs is (1015, 31); (1130, 25); (1365, 20), and 

represented graphically in Figure 1 which gives a picture of the trade-offs that have been made in the 

sequence of solutions to this eggshell breakage restricted bi-criteria eggs transportation problem. 

Table 6: Eggs Shipping Problem with 3X  

 Central Distribution Warehouses      j  

ai 

 

pi 

1 2 3 4   
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S

U 

G
U

N

A 
 

 

 
F 

A 

R
M 

 

 
 

i 

 

 

 
 

1 

 

C11=M 

 

19(0-15)  
25(15-30) 

31(30-60) 

 

C12 =2                 
 

 

12(0-25) 
15(25-50) 

 

C13 =7 

 

16(0-15) 
17(15-25)        

18(25-30) 

 

C14 =4              

 

  7(0-30) 
10(30-60) 

 

 
70 

 

 
4 

  x12= 3/2                 x13= 39/2                 x14=49  

 

 
 

2 

 

C21 =9 

 

  8(0-20) 
  9(20-30) 

10(30-60)                         

 

C22 =4 

 

11(0-30) 
12(30-65) 

13(65-100)                     

 

C23 =5 

 

13(0-30) 
14(30-50) 

16(50-60) 

 

C24 =8 

 

  5(0-20) 
  6(20-60) 

 

 
110 

 

 
 8 

  x22= 103/2  x23= 117/2    

 
 

 

3 

 
C31 =5 

 
20(0-32) 

25(32-35) 

31(35-40) 

 
C32=6 

 
17(0-30) 

18(30-47) 

20(47-55) 

 

C33 =M 

 
17(0-25) 

20(25-32) 

25(32-50) 

 
C34 =5 

 
  3(0-30) 

  4(30-60) 

 
 

90 

 
 

6 

x31=32  V*
31= 32 x32=47    V*

33=32 x34=11  

 

 
 

4 

 

C41=1 

 

  1(0-25) 
  2(25-40) 

 

C42=5 

 

  8(0-30) 
11(30-45) 

16(45-60) 

 

C43 =3 
 

 

17(0-20) 
21(20-40) 

 

C44=6 

 

14(0-12) 
16(12-30) 

 

 
30 

 

 
7 

x41=28    x43= 2    

          

x51=32      x54=158  

bj        60        100         80         60  

Lj        7           7         7          7 

 

This indicates that successive reduction in the eggs shipping time is there at the cost of an increase in the 

minimum total eggs shipping cost. With these egg shipping cost-time trade-off solution pairs set, the eggs 

transportation system decision maker is simply asked to select the best point of the set and then is given one 

of the associated solutions. 

 

7. CONCLUDING REMARKS  

 

In this paper an algorithm is developed for solving eggshell breakage restricted bi-criteria eggs transportation 

problem and all eggs shipping cost-time trade-off solution pairs that are pareto-optimal with respect to the 

eggs shipping cost and the eggs shipping time are also generated. The algorithm, which is very helpful for 

real-life multi-decision priority problems, takes into account the special structure of the eggs shipping cost-

time transportation problem under consideration. The paper also discusses a more realistic and general 

assumption that the eggs shipping time of bi-criteria eggs transportation problem depends on the quantity of 

the eggs transported and is an increasing piecewise constant function.  
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