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ABSTRACT 

The prediction of future observations can tell us at an early stage of testing how costly the testing is and whether actions should 

be taken to redesign the test. This paper deals with the Bayes interval prediction of the future ordered observations in a multiply 

type-II censored sample from an exponential distribution. The analysis will depend mainly on assumption that the sample size n 
is fixed as well as random variable. The Binomial and Poisson distributions are used for describing the random variable n. 

Numerical example is cited to illustrate the procedure and simulation study is carried out to study the performance of the 

process. 
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RESUMEN 

La predicción de futuras observaciones puede decirnos, en una etapa temprana de la prueba, cuan costosa es y las acciones que 

deben ser tomadas para rediseñar el test. Este paper trata de la predicción Bayesiana de la predicción de las futuras  
observaciones, ordenadas en una muestra censurada múltiple del  tipo-II de una distribución  exponencial. El análisis dependerá, 

principalmente de la asunción de que el tamaño n de la muestra es fija o una  variable aleatoria. Se usan las distribuciones 

Binomial y Poisson para describir la variable aleatoria n. Un ejemplo numérico es citado para ilustrar el  procedimiento y el 
estudio de  simulación es desarrollado para estudiar el comportamiento del proceso. 
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1. INTRODUCTION 

 

One of the most important problems in life testing is predicting future failures on the basis of available 

observed failure times. The prediction of future ordered observations shows how long a sample of units might 

run till all fail in life testing. The use of classical approach needs to construct some pivotal statistic to 

construct confidence interval of the future failure times, but sometimes to get the exact distribution of such a 

statistic is mathematically intractable and hence it is impossible to obtain exact predictive points for it by 

analytical methods. Usually Monte Carlo Markov Chain sampling is used in such situation. However, now a 

day a Bayes predictive approach is receiving much attention.  

In life testing experiments the test is terminated either at predetermined time is observed (Type-I censoring) 

or at a predetermined number of failures observed (Type-II censoring).  Such censoring schemes may be from 

left or right. Sometimes left and right censoring appears together, this is known as doubly censoring. 

Furthermore, if mid censoring arises amongst the doubly censoring  in the type II censoring scheme, the  

scheme is known as multiply type-II censoring, see Sing and Kumar(2007), Shah and Patel(2008).  

The exponential distribution received more emphasis in life testing experiment as a life time model due to its 

interesting properties. Several researchers have studied Bayesian prediction in the case of exponential 

distribution , among them are e.g. Al-Hussaini and Jaheen (1999), Al-hussaini (1999). In all these references, 

the sizes for old or future samples were taken fixed. The problem of Statistical inference when the sample size 

is a random variable is very important in practice. Samples of random size occur frequently in a natural 

manner. In some applications it is almost impossible to have a fixed sample size because some observations 

are always missing for various reasons, in medical or biological experiments some patients of the sample 

under consideration may left or die during the experiments. Prediction problem based on random sample size 

from exponential distribution have been treated by Lingappaiah (1986). The prediction is made in a future 
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sample based on earlier (k-r) samples when sample size fixed as well as random.  Abdel-Atq et al (2003) 

considered a Bayesian prediction for exponential distribution with change point under fixed and random 

sample size to predict failure times of second sample. All such works are based on simply under type-II 

censoring scheme. 

This paper is concerned with the Bayesian predictive interval for the remaining ordered failure times based on 

the multiply type-II censored data when sample size is random. When the population is very large or infinite 

Poisson distribution is used and for the finite population binomial distribution is used as the model for the 

variable sample size. The prediction intervals are constructed under informative (gamma) prior as well as non 

informative prior suggested by Martz and Waller(1982) for the parameter of the exponential distribution. A 

simulation study is carried out to check the performance of the new setup with fixed sample sized.  

 

2. MAIN RESULTS 

 

The exponential probability density function and its cumulative distribution function are given by

0   ,0   ,)(   xxexf  and  

0 x,1)(  xexF                                    (1)                                                                                                                        

where θ is a scale parameter. 

Consider the multiply type-II censoring scheme as follow: 

Out of n observations on the test first r failure timers are not observed, then k ordered failure times are 

observed. After that again t ordered failure times are not observed and then the test is terminated as soon as 

the s-th failure is observed. Thus only ordered observations available are  

sxtkrxkrxrxrx  .........21tkr  xand  ........21  

Note that (i) When r = 0 and t = 0 the scheme reduces to type-II censoring scheme. 

                (ii) When t= 0 the scheme reduces to doubly type –II censoring. 

                (iii) When r = 0 and s = n the scheme reduces to middle censoring.  

                (iv) When r = t= 0 and s = n the scheme reduces to complete sample scheme.     

The likelihood function based on such  a multiply type-II censoring scheme  can be written as 
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Using (1) , the likelihood function becomes  
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2.1 Natural Conjugate Prior 

 

A natural conjugate prior for the parameter θ of the exponential distribution is well known to be a gamma 

prior, given as  

aababe /1)(                                                                                                                    (4) 

where the hyper parameters a and b are chosen to reflect our beliefs. Applying Bayes theorem and using the 

likelihood (3) we get the posterior density of θ given x  under conjugate prior as 
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2.2 Non Informative Prior 

 

A general non informative prior for the parameter θ may be taken as ( See: Martz and Waller (1982)) 

0. 0, ,
1
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                     (6) 

For β = 1 it reduces to Jeffery’s non informative prior. Again the posterior distribution  of θ can be obtained 

by combining this non informative prior with the likelihood function  via Bayes theorem as 
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3. BAYES PREDICTIVE INTERVAL FOR THE REMAINING (N-S) ORDER STATISTICS UNDER 

NATURAL CONJUGATE PRIOR 

 

Now we consider the predictive interval for the remaining ( n-s) failure times given the observed failure times 

under multiply type-II censoring of a sample of size n  units whose life time distribution is exponential given 

in (1).   

Let xs+m denote the failure time of (s+m)
th 

component, m = 1, 2, … , n-s. 

Set  for simplicity y = xs+m. then the conditional density of y given x is given by  
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and for the exponential distribution it becomes 
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Forming the product of equations (5) and (9) and integrating over θ gives the predictive density of  y given x 

as 
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3.1 When sample size n has a Poisson distribution 
 

For infinite or very large population size we suppose that the sample size n is a Poisson random variable with 

probability mass function(pmf) 
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Using Consul (1984) and Gupta and Gupta (1984), the predictive density of y given x is obtained as 
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Using (10) and (11) in (12) we get 
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From which the predictive survival function of y is given by 
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To obtain the lower and upper (1-α)100% prediction bounds for y, iterative numerical methods are required 

by defining t0 from (14) for a given value of  )0( xtyP   with ly.respective 
2
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3.2 When sample size has a Binomial distribution 

 

For a finite population size we suppose that the sample size n is binomial random variable with parameters M 

and p, 0 < p <1 with pmf 
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Using (10) and (15) the predictive density of y given x can   be obtained in similar manner as 
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From which the predictive survival function of y is given by 
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The lower and upper (1-α)100% prediction bounds for y by using iterative numerical methods can be obtained  

by defining t0 from (17) for a given value of  )0( xtyP   with ly.respective 
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4. BAYES PREDICTIVE INTERVALS FOR THE REMAINING (N-S) ORDER STATISTICS 

UNDER NON INFORMATIVE PRIOR 

 

In this section we derive Bayes predictive bounds for y based on non informative prior for parameter θ. 

 Forming a product of equations (7) and (10) and integrating over θ gives the predictive density of y given x 

as 
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4.1 When sample size n has a Poisson distribution 

 

Using the method discussed in Section 3.1, the predictive density of y given x when n has Poisson distribution 

defined in (11) is 
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From which the predictive survival function of y given x is given by 
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4.2 When sample size n has binomial distribution 

 

Suppose that n has binomial distribution given in (15) then the predictive density of y given x can be obtained 

in similar manner as discussed in Section 3.1 as 
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From which the predictive survival function of y given x is obtained as 
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The lower and upper (1-α)100% prediction bounds for y by using iterative numerical methods can be obtained  

by defining t0 from (20) and (23)  for a given value of  )0( xtyP   with  
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for the cases discussed in Section 4.1 and 4.2 both.  

 

5. REAL EXAMPLE 
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In this section the effect of random sample sizes on Bayes predictive confidence interval  of first future failure 

after the termination of the test is studied. The results are compared with the results obtained on the basis of a 

fixed sample size. An example given by Lawless(1982. pp 138, 3.11( Type-B))  which represent failure times 

in minutes, for a specific type of electrical insulation in an experiment in which the insulation was subjected 

to a continuously increasing voltage stress is used. The ordered failure times of a sample of size 12 are  

12.3, 21.8, 24.4, 28.6, 43.2, 46.9, 70.7, 75.3, 95.5, 98.1, 138.6, 151.9 

We consider the following multiply Type II censoring scheme for the above data: 

-, 21.8, 24.4, 28.6, 43.2, 46.9, -, 75.3, 95.5, 98.1, -, - 

 

Here, we suppose that 12 items are put on the test and the experimenter failed to observe the first and seventh 

failure times, so these observations are censored and the last two observations are censored since the 

experimentation was stopped as soon as the tenth failure occurred. Our interest is to calculate the Bayes 

predictive confidence interval for the first ( x(11)) of the remaining n-s lifetimes under informative as well as 

non informative priors. Tables 1 and 2 summarize the 95% Bayes predictive confidence interval for x(11) 

obtained from the equations (14), (17), (20) and (23). The length of the confidence intervals are given in the 

brackets. The actual value of x(11) is 138.6. 

 

TABLE: 1  Table of 95% Bayes predictive confidence interval for fixed sample size and random sample size 

with binomial distribution. 
Prior Parameters Fixed Sample Size 

Confidence Interval 

( Length) 

Random sample size with binomial distribution. 
Confidence Interval 

( Length) 

a b β M=25, p = 0.95 M=30, p = 0.90 M=50, p = 0.70 

2 100 - (98.8319, 221.0149) 

     (122.1830) 

(98.3859,146.0969) 

        (47.7110) 

(98.3719, 143.6419) 

        (45.2700) 

(98.3519, 140.3049) 

        (41.9530) 

2 200 - (98.9399, 239.0749)   

       (140.1350) 

(98.4019, 148.7139) 

      (50.3120) 

(98.3839, 145.7649) 

      (47.3810) 

(98.3609, 141.7599) 

      (43.3990) 

2 300 - (99.0469, 257.0729) 

      (158.0260) 

(98.4169, 151.3309) 

         (52.9140) 

(98.3969, 147.8889) 

         (49.4920) 

(98.3689, 143.2169) 

         (44.8480) 

2 800 - (99.581, 346.5969) 

       (247.0149) 

(98.4949, 164.4129) 

        (65.9180) 

(98.4599, 158.5119) 

        (60.0520) 

(98.4119, 150.5069) 

        (52.0950) 

4 800 - (99.3689, 306.1309) 

        (206.7619) 

(98.4379, 153.6489) 

        (55.2110) 

(98.4079, 148.7079) 

        (50.3000) 

(98.3669, 142.0059) 

        (43.6390) 

5 800 - (99.2839, 290.4309) 

        (191.1469)    

(98.4159, 149.4719) 

        (65.9180) 

(98.3879, 144.9039) 

        (46.5160) 

(98.3499, 138.7079) 

        (40.3580) 

- - 2 (98.9369, 246.4659) 

        (147.5290) 

(98.4609, 161.9959) 

        (63.5350) 

(98.4459, 159.2199) 

        (60.7740) 

(98.4249, 155.4469) 

        (57.0220) 

- - 4 (99.1809, 302.0519) 

      (202.8709) 

(98.5649, 185.5879) 

        (87.0230) 

(98.5449, 181.7739) 

        (83.2290) 

(98.5169, 176.5939) 

        (78.0770) 

- - 6 (99.6209, 419.9029) 

       (320.2819 

(98.7519, 235.5919) 

        (136.8400) 

(98.7229, 229.5769) 

        (130.8540) 

(98.6849, 221.4159) 

        (122.7310) 

 

TABLE: 2  Table of 95% Bayes predictive confidence interval for random sample size with Poisson 

distribution.  
Prior Parameters Random sample size with Poisson distribution. 

Confidence Interval 

( Length) 

a b β λ = 20 λ = 30 λ = 35 λ = 40 

2 100 - (98.4249, 159.3189) 

     (60.8940) 

(98.1019, 141.6099) 

        (43.5080) 

(98.1019, 135.0709) 

        (36.9690) 

(98.1019, 125.2649) 

        (27.1630) 

2 200 -  (98.4469, 164.8509)   

       (66.4070) 

(98.1019, 143.6279) 

      (45.5260) 

(98.1019, 136.5569) 

      (38.4550) 

(98.1019, 126.2789) 

      (28.1770) 

2 300 - (98.4679, 170.4099) 

      (71.9410) 

(98.1019, 145.6489) 

         (47.5470) 

(98.1019, 138.0449) 

         (39.9430) 

(98.1019, 127.2929) 

         (29.1910) 

2 800 - (98.576, 198.4239) 

       (99.8470) 

(98.1019, 155.7989) 

        (57.6970) 

(98.1019, 145.4949) 

        (47.3930) 

(98.1019, 132.3629) 

        (34.2610) 

4 800 - (98.5080, 182.2409) 

        (83.7320) 

(98.1019, 146.4829) 

        (48.3810) 

(98.1019, 137.9329) 

        (39.8310) 

(98.1019, 127.0289) 

        (28.9270) 

5 800 - (98.4819, 175.9499) 

        (77.4680)    

(98.1019, 142.8639) 

        (44.7620) 

(98.1019, 134.9869) 

        (36.8850) 

(98.1019, 124.9379) 

        (26.8360) 

- - 2 (98.5029, 176.5809) 

        (78.0780) 

(98.1019, 158.3819) 

        (60.2800) 

(98.1019, 155.3889) 

        (57.2870) 

(98.1019, 151.5759) 

        (53.4740) 
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- - 4 (98.6189, 205.5219) 

      (106.9030) 

(98.1019, 180.6109) 

        (82.5090) 

(98.1019, 176.4699) 

        (78.3680) 

(98.1019, 171.0719) 

        (72.9700) 

- - 6 (98.8269, 266.6419) 

       (167.8150 

(98.1019, 227.7069) 

        (129.6050) 

(98.1019, 221.0839) 

        (122.9820) 

(98.1019, 212.0879) 

        (113.9860) 

 

6. SIMULATION STUDY 

 

In this section a simulation study is considered. A random sample of size 20 is generated 500 times from the 

exponential distribution with mean θ = 0.5 under two types of multiply type –II censoring schemes viz: (A) 

(r=0, k = 1, t = 0, s = 18) i.e. usual type-II censoring and (B) (r = 3, k = 6, t = 3, s = 18). In both the censoring 

schemes the experiment was terminated as soon as the 18
th

 failure was observed. The Bayes predictive 

confidence intervals for x(19) , the first failure time after the termination of the test in case of informative and 

non informative priors are calculated for each of the 500 samples and the average vales of such results are 

demonstrated in the Tables 3 and 4 for scheme (A) and in Tables 5 and 6 for scheme (B). The length of the 

confidence intervals are given the brackets.  The simulated value of the x(19)  (Average of 500 generated 

values of x(19) ) came out 4.5144.  

 

TABLE: 3  Table of 95% confidence interval for Xs+1  for fixed sample size and random sample size with  

                binomial distribution.  
Prior Parameters Fixed Sample Size 

Confidence Interval 

( Length) 

Random sample size with binomial distribution. 
Confidence Interval 

( Length) 

a b β M=30, p = 0.90 M=50, p = 0.70 M=100, p = 0.50 

2 2 - (3.5961, 6.9791) 

     (3.3830) 

(4.1346, 5.6593) 

        (1.5247) 

(4.1904, 5.4023) 

        (1.2119) 

(4.2120, 5.2505) 

        (1.0384) 

2 4 -  (3.6257, 7.2067)   

       (3.5810) 

(4.2957, 5.9175) 

      (1.6218) 

(4.2677, 5.5206) 

      (1.2529) 

(4.2062, 5.2527) 

      (1.0465) 

2 6 - (3.6833, 7.5085) 

      (3.8252) 

(4.2896, 5.9539) 

         (1.6644) 

(4.1888, 5.4496) 

         (1.2607) 

(4.2874, 5.3683) 

         (1.0809) 

4 2 - (3.6568, 6.7615) 

       (3.1047) 

(4.1663, 5.5503) 

        (1.3840) 

(4.2182, 5.316) 

        (1.0977) 

(4.2381, 5.1780) 

        (0.9399) 

6 2 - (3.6203, 6.04245) 

        (2.8042) 

(4.2625, 5.5485) 

        (1.2860) 

(4.3287, 5.3458) 

        (1.0171) 

(4.1761, 5.0175) 

        (0.8413) 

- - 2 (3.6192, 7.4217) 

        (3.8024) 

(4.2161, 5.9806) 

        (1.7645) 

(4.1262, 5.5076) 

        (1.3814) 

(4.1647, 5.3636) 

        (1.1989) 

- - 4 (3.7281, 8.2360) 

      (4.5080) 

(4.2512, 6.3045) 

        (2.0532) 

(4.2350, 5.8548) 

        (1.6198) 

(4.1167, 5.4818) 

        (1.3651) 

- - 6 (3.7088, 8.9606) 

       (5.2517) 

(4.2468, 6.6608) 

        (2.4140) 

(4.2493, 6.1686) 

        (1.9193) 

(4.2139, 5.8564) 

        (1.6424) 

 

TABLE: 4  Table of 95% confidence interval for Xs+1  for random sample size with Poisson distribution. 
Prior Parameters Random sample size with Poisson distribution. 

Confidence Interval 

( Length) 

a b β λ = 30 λ = 40 λ = 50 

2 2 - (4.1851, 5.7662) 

        (1.5811) 

(4.2503, 5.2205) 

        (0.9702) 

(4.0055, 4.6071) 

        (0.6015) 

2 4 - (4.2517, 5.9160) 
      (1.6644) 

(4.2351, 5.2207) 
      (0.9855) 

(4.0946, 4.7158) 
      (0.6212) 

2 6 - (4.2880, 6.0127) 

         (1.7248) 

(4.2101, 5.2115) 

         (1.0014) 

(4.1590, 4.7976) 

         (0.6386) 

4 2 - (4.2271, 5.6700) 
        (1.4429) 

(4.2582, 5.1681) 
        (0.9099) 

(4.0950, 4.6467) 
        (0.5516) 

6 2 - (4.2346, 5.5553) 

        (1.3207) 

(4.3229, 5.1118) 

        (0.7889) 

(4.3896, 4.9274) 

        (0.5378) 

- - 2 (4.1928, 6.0368) 
        (1.8440) 

(4.1764, 5.2920) 
        (1.1156) 

(4.2412, 5.3825) 
        (1.1413) 

- - 4 (4.1469, 6.2481) 

        (2.1012) 

(4.1813, 5.4614) 

        (1.2801) 

(4.2175, 5.5269) 

        (1.3094) 

- - 6 (4.2243, 6.7422) 
        (2.5179) 

(4.1158, 5.5909) 
        (1.4750) 

(4.0711, 5.5610) 
        (1.4899) 
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TABLE: 5  Table of 95% confidence interval for Xs+1  for fixed sample size and random sample size with 

binomial distribution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE: 6  Table of 95% confidence interval for Xs+1  for random sample size with Poisson distribution. 

 
Prior Parameters Random sample size with Poisson distribution. 

Confidence Interval 

( Length) 

a b β λ = 30 λ = 40 λ = 50 

2 2 - (4.0950, 5.6551) 

        (1.5601) 

(3.9973, 4.9110) 

        (0.9136) 

(4.2763, 4.9111) 

        (0.6348) 

2 4 - (4.1012, 5.7088) 
      (1.6075) 

(4.0946, 5.0536) 
      (0.9590) 

(4.2788, 4.9226) 
      (0.6438) 

2 6 - (4.0118, 5.6659) 

         (1.6541) 

(4.2763, 5.2894) 

         (1.0130) 

(4.4217, 5.0996) 

         (0.6779) 

4 2 - (3.8745, 5.2146) 

        (1.3401) 

(4.2788, 5.1543) 

        (0.8755) 

(4.3830, 4.9698) 

        (0.5867) 

6 2 - (4.2225, 5.5438) 

        (1.3212) 

(4.1419, 4.9224) 

        (0.7805) 

(4.4341, 4.9753) 

        (0.5412) 

- - 2 (4.3970, 6.3114) 
        (1.9144) 

(4.0711, 5.3139) 
        (1.2428) 

(4.3475, 5.5136) 
        (1.1661) 

- - 4 (4.3981, 6.6080) 

        (2.2099) 

(4.1590, 5.6025) 

        (1.4435) 

(4.1419, 5.4278) 

        (1.2859) 

- - 6 (4.2508, 6.7621) 
        (2.5113) 

(4.3475, 6.1087) 
        (1.7612) 

(4.0305, 5.5013) 
        (1.4708) 

 

7. CONCLUSIONS 

 

In certain circumstances some observations are always missing for various reasons, in medical, biological or 

zoological experiments some members of the sample under consideration may left or die during the 

experiments thus, random sample size arises. In analysis of such data it would be worth interesting  to study 

the performance of  the estimator under random sample size against a fixed sample size. 

From the real data set as well as simulation study , we conclude that the use of a random sample size 

generates smaller width confidence interval  than that of a fixed sample size under multiply type-II censoring  

and this conclusion agree with the conclusion reported by Lingappaiah(1986) based on complete sample 

without censoring. Also the length of the Bayes predictive confidence interval is affected by choosing the 

different values of parameter of the Poisson distribution ( λ) and the parameters of binomial distribution( M 

and p).  The other conclusions observed from the Tables 1 to 6 are as follows: 

(i) In case of informative prior, for fixed value of prior parameter a , the length of the confidence 

interval decreases with decreasing  the value of the prior parameter b for fixed as well as random 

sample size. 

(ii) Keeping the value of the prior parameter b fixed,  the length of the confidence interval decreases 

with increasing the value of the prior parameter b for fixed as well as random sample size. 

Prior Parameters Fixed Sample Size 

Confidence Interval 

( Length) 

Random sample size with binomial distribution. 

Confidence Interval 

( Length) 

a b β M=30, p = 0.90 M=50, p = 0.70 M=100, p = 0.50 

2 2 - (3.5196, 6.8695) 

     (3.3499) 

(4.2678, 6.1635) 

        (1.8957) 

(4.2463, 5.7607) 

        (1.5144) 

(4.1031, 5.3652) 

        (1.2620) 

2 4 -  (3.5521, 7.1156)   
       (3.5635) 

(4.2184, 6.1573) 
      (1.9389) 

(4.2214, 5.5206) 
      (1.5425) 

(4.1028, 5.3837) 
      (1.2808) 

2 6 - (3.5066, 7.2027) 

      (3.6961) 

(4.2287, 6.2325) 

         (2.0038) 

(4.3329, 5.4927) 

        (1.6046) 

(4.2499, 5.5863) 

         (1.3364) 

4 2 - (3.4996, 6.4510) 
       (2.9513) 

(4.2737, 5.9289) 
        (1.6552) 

(4.1805, 5.9375) 
        (1.3122) 

(4.0043, 5.0952) 
        (1.0908) 

6 2 - (3.6860, 6.5467) 

        (2.8607) 

(4.1111, 5.5319) 

        (1.4208) 

(4.2123, 5.3860) 

        (1.1737) 

(4.0774, 5.0704) 

        (0.9929) 

- - 2 (3.7942, 7.7722) 
        (3.9780) 

(4.1972, 6.4689) 
        (2.2717) 

(4.1929, 6.0364) 
        (1.8435) 

(4.4003, 6.0928) 
        (1.6924) 

- - 4 (3.6196, 7.9962) 

      (4.3765) 

(4.2060, 6.9752) 

        (2.7692) 

(4.2055, 6.4523) 

        (2.2468) 

(4.2563, 6.2386) 

        (1.9850) 

- - 6 (3.7067, 8.9200) 
       (5.2133) 

(4.1458, 7.6324) 
        (3.4866) 

(4.2303, 7.1227) 
        (2.8924) 

(4.2327, 6.7598) 
        (2.5271) 
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(iii) In case of non informative prior the length of the confidence interval decreases with decreasing 

the value of the prior parameter β for fixed as well as random sample size. 

(iv) For any choice of informative or non informative prior parameters the length of the confidence 

interval decreases in case of sample size has binomial distribution when M increases and p 

decreases. 

(v) The length of the confidence interval decreases for any value of the informative and non 

informative priors when sample size has Poisson distribution. In case of λ > 30 the length of the 

confidence interval becomes smaller than that of when the distribution of sample size is 

binomial. 

(vi) In case of Multiply type-II censoring the length of the confidence interval becomes smaller than 

that of  random  sample size with binomial distribution compared to the usual type II censoring.  

(vii) In case of Multiply type-II censoring the length of the confidence interval becomes smaller than 

that of  random  sample size with Poisson distribution for vary large value of parameter λ(λ >50) 

compared to the usual type II censoring.  
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