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ABSTRACT
Max-Mixture (MM) processes are defined as Z = max{aX, (1− a)Y } with X an asymptotic depen-

dent (AD) process, Y an asymptotic independent (AI) process and a ∈ [0, 1]. So that, the mixture

parameter a controls the level of the AD part present in the MM process Z. Here we focus on two

statistical tests for the mixing parameter a which are based on censored pairwise likelihood estimates.

We compare their performance through an extensive simulation study. Monte Carlo simulation are

a fundamental tool for asymptotic variance calculations. We apply our tests to daily precipitations

from the East of Australia. Limitations and possible developments of the approach are discussed.
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RESUMEN
Los procesos Max-mixture son definidos por Z = max{aX, (1 − a)Y } donde X es un proceso

asintóticamente dependiente (AD), Y es un proceso asintóticamente independiente (AI) y a ∈ [0, 1].

Asi el parámetro de mezcla a controla el nivel de la parte asintóticamente dependiente en el proceso

MM Z. En este articulo, nos interesamos a 2 tests estad́ısticos sobre el parametro de mezcla a, estos

tests están basados sobre estimadores de la verosimilitud bidimensional censurada. Comparamos sus

capacidades con un amplio estudio de simulación. Las simulaciones de Monte-Carlo juegan un papel

importante en el cálculo de la varianza asintótica. Utilizamos estos tests sobre precipitaciones en

el Este de Australia. Concluimos con las limitaciones y los posibles desarrollos de estas herramientas.

PALABRAS CLAVE: Verosimilitud compuesta; Proceso max-estable; Modelos Max-Mixture;

Verosimilitud bidimensional; Simulaciones de Monte-Carlo.

1. INTRODUCTION

The rise of risky environmental events leads to renewed interest in the statistical modelling of extremes,

for instance, modelling extreme precipitation is pivotal in flood protection. In the last decade, max-

stable (MS) models have arised as a common tool for modeling spatial extremes, since they extend the
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gereralized extreme value (GEV) distribution to the spatial setting. The definitions on MS processes,

GEV distributions ... are given in details in Section 2.. MS process models for spatial data were first

constructed using the spectral representation by [18]. Several subsequent works on the construction

of spatial MS processes have been developed, see e.g., [40, 37, 26, 16]. For a detailed overview of MS

processes, we refer the reader to [20].

Within the class of MS models, only two types of dependence structures are possible; either the

process is asymptotically dependent (AD) or it is exactly independent [41, 15, 2]. Whereas, in spatial

context, especially in the environmental domain, many dependence scenarios could arise, where AD

and asymptotic independent (AI) might cohabite. Hence, fitting AD models (MS models) to AI

data may lead to over/under estimation of probabilities of extreme joint events, since it is wrongfully

assumed that the most extreme marginal events may occur simultaneously [10]. Alternatively, [46]

developed a a flexible class of MM models. The basic idea is to mix MS and AI processes: Z =

max{aX, (1− a)Y }, with X an AD process, Y an AI process and a ∈ [0, 1]. So that, these models are

able to capture both AD and AI, and the spatial extremal dependencies are varying according to the

value of a.

Hypothesis testing is one of the main tools in statistics and crucial in many applications. In the

present paper, we propose two statistical tests on the value of the mixing parameter of a MM process.

Our objective is to facilitate the modeling of spatial data by a random field with appropriate extremal

behaviour. In particular, we expand the use of two classical statistics to hypothesis testing in the area

of spatial extremes.

Parametric likelihood inference for MS models is not possible in general, since the full likelihood is

not easily computable for a MS vector in dimension greater than 2. For this reason a methodology

based on partial specification of the full likelihood is proposed. The composite likelihood which has

gained its popularity thanks to its computational manageability and its theoretical properties [30, 43].

In particular, maximum pairwise likelihood estimation for MS models were first suggested by [34] and

is now widely used, see e.g., [17, 23]. As with MS models, MM models can be fitted using composite

likelihood and compared using the composite likelihood information criterion (CLIC), see, e.g., [46, 2].

The remainder of the paper is organized as follows. Section 2. reviews the definitions and theory of

spatial extreme processes. The censored pairwise likelihood approach is presented for the statistical

inference in Section 3., our proposed pairwise statistics and their main properties are detailed in

Section 4. In Section 5., we show by means of a series of simulation studies the performance of our

proposed tests. In Section 6., we illustrate our testing approach by the analysis of daily precipitation

from the East of Australia. Concluding remarks and some perspectives are addressed in Section 7..

Some auxiliary results are summarized in an appendix.

2. SPATIAL EXTREMES MODELING

Throughout the paper, {X(s)}s∈S , S ⊂ Rd (generally, d = 2) is a spatial process, and for the sake of

simplicity it will be assumed to be strictly stationary. This means that for any k ∈ N, s1, . . . , sk ∈ S
and s1 + h, . . . , sk + h ∈ S,

(X(s1), . . . , X(sk))
t D

= (X(s1 + h), . . . , X(sk + h))
t
,
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provided that h is any translation vector. In other words, strict stationarity implies that the finite-

dimensional distribution is unaffected by the translation of an arbitrary quantity h ∈ Rd.
We shall assume also the the process is isotropic, which means: for any Rd isometry m with m(si) ∈ S,

i = 1, . . . , k,

(X(s1), . . . , X(sk))
t D

= (X(m(s1)), . . . , X(m(sk)))
t
.

For a detailed description on the fundamentals of spatial stochastic processes, see, e.g. [12, 31].

2.1. Max-stable processes

MS processes form the natural extension of multivariate extreme value distributions to infinite dimen-

sions. We briefly review here spatial MS processes. Suppose that {Yi(s) : s ∈ S ⊂ Rd}, i = 0, 1, 2, . . . ,

are independent and identically distributed (i.i.d) replicates of a random process Y (s), and that there

are sequences of continuous functions {an(s) > 0} and {bn(s)} such that, the rescaled process of

maxima,
n∨
i=1

Yi(s)− bn(s)

an(s)

D→ X(s), n→∞, (2.1)

where
∨

and
D−→ denote, resp., the max-operator and convergence in distribution. The limiting random

process X is assumed to be non-degenerate. From [18, 20] the class of the limiting processes X(s) is

the class of MS processes. This definition of MS processes offers a natural choice for modeling spatial

extremes. Univariate extreme value theory (EVT) implies that the marginal distributions of X(s) are

Generalized Extreme Value (GEV) distributed, i.e.,

GEVµ(s),σ(s),ξs)(x) := P(X(s) ≤ x) = exp

{
−
(

1 + ξ(s)
x− µ(s)

σ(s)

)−1/ξ(s)}
, 1 + ξ(s)

x− µ(s)

σ(s)
> 0,

(2.2)

for some location µ(s) ∈ R, scale σ(s) > 0, and shape ξ(s) ∈ R.

MS processes with unit Fréchet margins (ie with distribution function F (x) = exp{−x−1}, x > 0)

are called simple MS processes (corresponding to µ(s) = 0, σ(s) = 1 and ξ(s) = 1). They have the

following very useful representation (see [18, 37]):

X(s) = max
k≥1

Qk(s)/Pk, s ∈ S, (2.3)

where Qk(s) are independent replicates of a non-negative stochastic process Q(s) with unit mean at

each s, and Pk are points of a unit rate Poisson process on R+. Given any MS process, margins can

be transformed to Fréchet margins. In what follows, we consider only simple MS processes. With

this choice the normalizing functions are an = n and bn = 0. For a detailed overview on EVT, we

refer the reader to [9, 3, 19].

Different choices for the process Q(s) in (2.3) lead to more or less flexible models for spatial maxima.

Commonly used models are the Gaussian extreme value model (Smith model) [40], the extremal

Gaussian model (Schlather model) [37], the truncated extremal Gaussian model (TEG) originally due

to [37] and has been exemplified by [16, 2] (resp. [24]) in the spatial (resp. spatiotemporal) context,

the Brown-Resnick model (BR) [26], and the extremal-t model [32].
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For K ∈ N \ {0}, s1, . . . , sK ∈ S, and x1, . . . , xK > 0, the finite K-dimensional distributions of the

process X owing to the representation (2.3) may be written as

− logP(X(s1) ≤ x1, . . . , X(sK) ≤ xK) = E

[
K∨
k=1

{
Q(sk)

xk

}]
≡ V Xs1,...,sK (x1, . . . , xK), (2.4)

where V Xs1,...,sK is called the exponent function. It summarizes the extremal dependence structure,

and is homogeneous of order −1, i.e.,V Xs1,...,sK (tx1, . . . , txK) = t−1V Xs1,...,sK (x1, . . . , xK) for any t > 0.

Moreover, it satisfies V Xs1,...,sK (∞, . . . , xk, . . . ,∞) = 1/xk for each k = 1, . . . ,K. The coefficient defined

as

−x logP{X(s1) ≤ x, . . . ,X(sK) ≤ x} = V Xs1,...,sK (1, . . . , 1) ≡ θs1,...,sK ,

is known as the extremal coefficient. Complete dependence (resp. complete independence) is achieved

when θs1,...,sK = 1 (resp. θs1,...,sK = K). Roughly speaking, θs1,...,sK corresponds to the effective

numbers of independent maxima among K [38]. Due to computational issues, the K dimensional

distributions are not easily tracktable. This is why the pairwise distributions are used. The pairwise

extremal coefficient θ : R+ 7→ [1, 2] satisfies

P[max{X(s), X(s+ h)} ≤ x] = exp (−1/x)
V X
h (1,1)

:= F (x)θ(h), x > 0, (2.5)

for some spatial lag vector h. In Table 1, we give a brief summary of five well-known MS processes

by their bivariate exponent function V Xh and extremal coefficient θ. Indeed, Smith (resp. Schlather)

process is a special case of BR (resp. extremal-t) when 2γ(h) =
√
hTΣ−1h, for some covariance matrix

Σ (resp. degrees of freedom v = 1).

Model Exponent function V Xh (x1, x2) Extremal coefficient θ(h)

Smith 1
x1

Φ

(
δ(h)
2 +

log
(

x2
x1

)
δ(h)

)
+ 1

x2
Φ

(
δ(h)
2 +

log
(

x1
x2

)
δ(h)

)
2Φ
(
δ(h)
2

)
δ(h) =

√
hTΣ−1h and Φ(.) denotes the standard normal distribution.

Schlather 1
2

(
1
x1

+ 1
x2

) [
1 +

√
1− 2(ρ(h)+1)x1x2

(x1+x2)2

]
1 +

(
1−ρ(h)

2

)1/2
ρ(h) is the correlation coeffient.

TEG
(

1
x1

+ 1
x2

) [
1− α(h)

2

(
1−

√
1− 2(ρ(h)+1)x1x2

(x1+x2)2

)]
2− α(h)

[
1−

(
1−ρ(h)

2

)1/2]
α(h) = E[|A ∩ {h+A}|]/E(|A|), |.| : volume of the random set A.

If A is a disk of fixed radius r, α(h) ' (1− h/2r)11[0,2r].

BR 1
x1

Φ

(√
γ(h)
2 +

log
(

x2
x1

)
√

2γ(h)

)
+ 1

x2
Φ

(√
γ(h)
2 +

log
(

x1
x2

)
√

2γ(h)

)
2Φ

[(
γ(h)
2

)1/2]
γ(.) denotes the semivariogram.

Extremal-t 1
x1
Tv+1

(
−bρ(h) + b

(
x2

x1

)1/v)
+ 1

x2
Tv+1

(
−bρ(h) + b

(
x1

x2

)1/v)
2Tv+1

(√
(v + 1) 1−ρ(h)

1+ρ(h)

)
Tv is the cumulative distribution function of a Student random variable

with v ≥ 1 degrees of freedom. b2 = {v + 1}/{1− ρ2(h)}

Table 1: Bivariate marginal probability distributions for MS models

4



The stochastic process X(s) defined in (2.3) has the bivariate density function

fXh (x1, x2) = exp{−V Xh (x1, x2)}
{
∂1V

X
h (x1, x2)∂2V

X
h (x1, x2)− ∂212V Xh (x1, x2)

}
,

where ∂i := ∂
∂xi

, ∂212 := ∂2

∂x1∂x2
, and V Xh is the exponent measure of the MS process X(s).

2.2. Pairwise extremal dependence summary measures

In addition to the extremal coefficient θ described in Section 2.1., we recall here some measures/functions

that may be used to describe the extremal dependence behavior of spatial processes.

[10] suggested two model-free diagnostic measures; χu(h) and χ̄u(h) in order to identify different

types of tail dependence. For a stationary spatial process {X(s)}s∈S with univariate margin F , AD

is characterized by χ(h) > 0, with

χ(h) = lim
u→1−

P{F (X(s)) > u|F (X(s+ h)) > u}, s, s+ h ∈ S. (2.6)

This means that, for an AD process like MS process, a large event at location s+h leads to a non-zero

probability of a similarly large event at location s for some spatial lag vector h. On the other hand,

a process is AI if χ(h) = 0 for any h. The best-known AI example is the Gaussian model for which

ρ(h) 6= 1. This means that the dependence strength between events observed at two distinct spatial

locations vanishes as their extremeness increases, see [39]. It is known that MS processes ar AD (or

independent). This coefficient is related to the pairwise extremal coefficient θ of a MS process through

the relation χ(h) = 2− θ(h). Equivalently, for u ∈ [0, 1]

χu(h) = 2− logP{F (X(s)) < u,F (X(s+ h)) < u}
logP{F (X(s+ h)) < u}

and χ(h) = lim
u→1−

χu(h). (2.7)

The function χu(h) can be viewed as a measure of the dependence at the u-quantile level. Both

dependence functions θ and χ provide simple measures of extremal dependence within the class of

AD distributions. An alternative dependence coefficient which measures the strength of dependence

for AI processes

χ̄u(h) =
2 logP(F (X(s)) > u)

logP(F (X(s)) > u,F (X(s+ h)) > u)
− 1 and χ̄(h) = lim

u→ 1−
χ̄u(h). (2.8)

AD (resp. AI) is achieved if χ̄(h) = 1 (resp. χ̄(h) < 1). Moreover, χ̄u(h) ∈ (0, 1) (resp. (−1, 0))

implies positive (resp. negative) association at distance h. Hence |χ̄u(h)| usually increases with the

dependence. So, in practice, the two indicators χ and χ̄ should be considered together. Nevertheless,

inference based on these measures is difficult because few observations are available as u approaches

1, see e.g., [5].

On one other hand, the coefficient of tail dependence η(h) has been introduced by [29]. It measures

the strength of extremal dependence within the class of AI models. This can be seen by looking at

the bivariate joint tail and the conditional upper tail that behave resp. as

P(X(s) > x,X(s+ h) > x) ∼ Lh(x)x−1/η(h), x→∞, (2.9)

P(X(s) > x|X(s+ h) > x) ∼ Lh(x)x1−1/η(h), x→∞, (2.10)
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where Lh(.) is a slowly varying function at ∞; that is, limy→∞
Lh(yt)
Lh(y)

= 1, t > 0, and η(h) ∈ (0, 1].

Here, AI corresponds to η(h) < 1. η(h) ∈
(
1
2 , 1
) (

resp.
(
0, 12
))

implies a negative (resp. positive)

association at distance h. In particular, non independent simple MS processes have η(h) = 1 for all

h. Moreover, under condition (2.9), one can easily deduce that χ̄(h) = 2η(h)− 1.

2.3. Hybrid models of spatial extremal dependence

For any stationary process X, we denote by FXh (x1, x2) the bivariate distribution function of the pair

(X(s), X(s+ h)).

Processes derived from Gaussian processes by a non decreasing transformation of the marginals are

examples of AI processes. Alternatively, the class of inverted MS processes has been proposed by [46].

It were found to be more flexible than Gaussian derivated processes in some applications [41, 15]. Let

{X ′(s)}s∈S be a MS process and consider

Y (s) = −1/ log [1− exp {−1/X ′(s)}] , s ∈ S. (2.11)

(Y (s)s∈S) is called an inverted MS process. For these processes, η(h) = 1/θ(h), where θ(h) is the

bivariate extremal coefficient of the MS process X ′(s). With this construction, any MS process X ′(s)

may be transformed into an AI counterpart Y (s). The bivariate cumulative distribution function

(c.d.f.) of Y (s) is given by

FYh (x1, x2) = −1 + exp(−x−11 ) + exp(−x−12 ) + exp{−V X
′

h [t(x1), t(x2)]}, (2.12)

where V X
′

h is the exponent measure of the bivariate c.d.f. corresponding to {X ′(s), X ′(s+ h)} and

the transformation t(x) : (0,∞) 7→ (0,∞) is given by t(x) = −1/ log[1− exp{−1/x}].
In addition, [46] developed MM models by combining inverted MS and MS models, which add modeling

flexibility to spatial extreme analysis and seem able to encompass different degrees of spatial extremal

dependence. Let {X(s)}s∈S be a simple MS process with a bivariate c.d.f., FXh , and {Y (s)}s∈S be an

inverted MS process with a bivariate c.d.f. FYh . Assume X and Y are independent. Then the process

Z(s) = max{aX(s), (1− a)Y (s)}, 0 ≤ a ≤ 1, (2.13)

is called a MM process. It has unit Fréchet margins. The bivariate c.d.f. is straightforwardly obtained

for 0 < a < 1.

FZh (z1, z2) = FXh

(z1
a
,
z2
a

)
FYh

(
z1

1− a
,

z2
1− a

)
. (2.14)

Furthermore, the bivariate conditional upper tail probability has the form (see, [46, 2])

P(Z(s) > z|Z(s+ h) > z) ∼ a {2− θ(h)}+ (1− a)1/η(h)
Lh {z/(1− a)}
z1/η(h)−1

, z →∞. (2.15)

Accordingly, MS models (a = 1), may be too restrictive in the sense that they have only the first-order

term in (2.15), while AI models (a = 0), may be unreliable since they are left with the second term

only. Therefore, MM models seem to provide a good balance between the two classes.

Figure 1 displays four realizations of two MM models over the square [0, 10]2 according to different

values of the mixing coefficient a. In order to show the role of the mixing coefficient, the plots
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Figure 1: Simulations of the MM model (2.13) on the logarithm scale according to different values

of the mixing coefficient a ∈ {1, 0.7, 0.3, 0}. Left panel: X is an isotropic Smith process with Σ = I2

(2 × 2 identity matrix), and Y is an inverted extremal-t process with v = 2 degrees of freedom and

exponential correlation function ρ(h) = exp(−‖h‖). Right panel: X is an isotropic extremal-t process

with v1 = 2 degrees of freedom and exponential correlation function ρX(h) = exp(−‖h‖), and Y is an

inverted extremal-t process with v2 = 5 degrees of freedom and ρY (h) = exp(−‖h‖).

are obtained by considering values between a = 1 (MS process) and a = 0 (inverted MS process).

Clearly, we observe that a reveals the strength of AD part in the process Z. So that, this model

extends classical dependence modeling within the AD class and is appropriate when AD is present

at all distances because it allows to capture a second order in the dependence structure which is not

possible with a MS model. The simulations have been carried out using the function rmaxstab of the

R package SpatialExtremes [35].

3. INFERENCE FOR MM PROCESSES: CENSORED PAIRWISE LIKELIHOOD AP-

PROACH

In order to propose a testing procedure on the mixing parameter a of a MM process Z (2.13), we

use the composite likelihood for inference. Hence, in this section, we briefly describe the composite

likelihood estimation procedure for the process Z. As the full likelihood is not generally known for MS

models due to the tractability of distribution functions and densities for MS process models, composite

likelihoods turn out to be attractive surrogates as the resulting estimator enjoys desirable asymptotic

properties such as consistency and asymptotic normality, provided some regularity conditions are met

[4, 30, 43, 44]. In particular, the pairwise likelihood estimation has been found useful to estimate

parameters in a MS process, see e.g. [34, 16]. Assume that we observe the process Z at D locations

s1, . . . , sD and T times t1, . . . , tT , where the observations are assumed to be independent in time. We
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denote by ϑ the vector gathering the parameters to be estimated using pairwise likelihood. Then the

(weighted) pairwise log-likelihood is

p`(ϑ) =

T∑
k=1

D−1∑
i=1

D∑
j>i

ωij logL(zik, zjk;ϑ), (3.1)

where zjk is the kth observation of the jth site, L(zik, zjk;ϑ) is the likelihood of the pair (zik, zjk), and

ωij are non negative weights specifying the contribution of each pair. A careful choice of the weights

ωij could improve the statistical efficiency as well as the computational one. A simple weighting choice

is to let ωij = 11{h≤δ} for some specified value δ, where 11{B} represents the indicator function of B.

With this approach, the selection of the threshold δ is critical, see [22]. One possibility would be to

consider δ as the q-quantile of the distribution of the distances between pairs of sites, q ∈ [0, 1], see,

e.g. [1, 2]. The idea beyond this approach is that it is expected that neighboring pairs are strongly

dependent, thus providing valuable information for estimating the dependence structure.

In order to improve the estimation of the AI parameters of Z, a censored pairwise likelihood estimation

approach has been developed by [46] and applied by [2] for MM processes. Let FZh denotes the bivariate

c.d.f. of Z (2.14) and u ∈ R is a high threshold; the censored pairwise likelihood contribution is defined

as follows

Lu(zik, zjk;ϑ) =

FZh (u, u;ϑ), if max (zik, zjk) ≤ u

∂212F
Z
h (zik, zjk;ϑ), if max (zik, zjk) > u.

(3.2)

Then the maximum censored pairwise likelihood estimator is given by ϑ̂u = argmax p`u(ϑ), where

p`u(.) is the (weighted) censored pairwise log-likelihood. Asymptotic properties of the maximum

censored pairwise likelihood estimator ϑ̂u are available from [46, 2, 24], which we now summarize. For

large T and under some regularity conditions, ϑ̂u is asymptotically Gaussian with asymptotic variance

G−1(ϑ) = H−1(ϑ)J (ϑ)H−1(ϑ),

where G(ϑ) is the Godambe information matrix, H(ϑ) = E{−∇2p`u(ϑ)} is called the sensitivity ma-

trix, and J (ϑ) = Var{∇p`u(ϑ)} = E{∇p`u(ϑ)∇tp`u(ϑ)} is called the variability matrix. Standard

errors computation of ϑ̂u requires the estimation of the Godambe matrix and its components. Ana-

lytical expressions for H(ϑ) and J (ϑ) are difficult to obtain in mostly realistic applications. Hence, a

Monte Carlo procedure can be applied to estimate the asymptotic variance matrix,

Ĥ(ϑ) = −M−1
M∑
k=1

∇2p`u(ϑ̂; zk), (3.3)

Ĵ (ϑ) = M−1
M∑
k=1

∇p`u(ϑ̂; zk)∇tp`u(ϑ̂; zk), (3.4)

where zk, k = 1, ...,M , denote the kth datasets simulated from the fitted model, see for e.g., [44, 7]

and the references therein. Analogously, the above-mentioned asymptotic properties of ϑ̂u are also

satisfied for the maximum pairwise likelihood estimator ϑ̂ = argmax p`(ϑ), see [27, 30, 11].
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Remark 3.1 Different censoring approaches of the pairwise likelihood have been introduced. In ad-

dition to (3.2), the censored pairwise likelihood contribution Lu(zik, zjk;ϑ) of a pair (zik, zjk) can be

taken as follows

Lu(zik, zjk;ϑ) =



FZh (u, u;ϑ), if max (zik, zjk) ≤ u

∂1F
Z
h (zik, u;ϑ), if zik > u, zjk ≤ u

∂2F
Z
h (u, zjk;ϑ), if zik ≤ u, zjk > u

∂212F
Z
h (zik, zjk;ϑ), if min(zik, zjk) > u.

(3.5)

This approach has proved to be useful for the statistical inference of spatial extremes, see, e.g. [24, 47,

42, 25].

Similarly to the weights ωij , the choice of threshold u is crucial. A common choice is to set u

corresponding to the empirical q-quantile at each site, provided that q is sufficiently large, see, e.g.

[24, 5, 2].

4. CENSORED PAIRWISE LIKELIHOOD STATISTICS FOR TESTING H0 : a = a0

VERSUS H1 : a 6= a0

To compare the performance of nested models, a composite likelihood ratio test can be performed.

Suppose that the parameters of a MM model ϑ ∈ Rq is partitioned as ϑ = (ϑ1, ϑ2) ∈ Rq1 × Rq2 ,

with q1 + q2 = q, and that we want to test whether the null hypothesis H0 : ϑ1 = ϑ1∗ holds. In

this testing framework, the parameter ϑ1 ∈ Rq1 is the parameter of interest, while ϑ2 ∈ Rq2 acts as a

nuisance parameter. Let ϑ̂u = (ϑ̂1u, ϑ̂
2
u) denotes the unrestricted maximum censored pairwise likelihood

estimator, and ϑ̂∗u = (ϑ1∗u , ϑ̂
2∗
u ) denotes the maximum censored pairwise likelihood estimator under

the null hypothesis, i.e., ϑ̂2∗u is the maximum censored pairwise likelihood estimator of ϑ2 when ϑ1 is

held fixed to the value ϑ1∗. A two-sided censored pairwise likelihood ratio test may be based on the

statistic (see, e.g. [27, 44] and the references therein)

LR = 2{p`u(ϑ̂u)− p`u(ϑ̂∗u}
D−→

q1∑
j=1

cjWj , (4.1)

where the Wj ’s are independent χ2
1 random variables, and the cj ’s are the eigenvalues of the matrix

{H1}−1G1 evaluated under the null hypothesis, where H1(ϑ) and G1(ϑ) denote, resp., the q1 × q1

submatrices of {H(ϑ)}−1 and G(ϑ) with elements corresponding to ϑ1. Various adjustments have

been proposed in the literature to recover an asymptotic chi-squared distribution χ2
q1 when q1 >

1. For a detailed description on these adjustments, we refer the reader to see, e.g., [8, 21, 28, 33,

36]. Nevertheless, simulation-based techniques could be used to calculate the quantiles of the limit∑q1
j=1 cjWj .

In the present paper, our purpose is to test the hypothesis H0 : a = a0 versus H1 : a 6= a0, for some

specified value a0 ∈[0,1]. Therefore, we propose the following two statistics exploiting the maximum

pairwise likelihood as an inferential tool.
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• The pairwise likelihood ratio statistic, which can be easily deduced from (4.1) with ϑ1 = a and

q1 = 1,

LRa = c−1LR
D−→ χ2

1, (4.2)

where the constant c is computed by the same manner described above, in which the matrices

for this special case are of dimensions 1× 1.

• The Z-test statistic which is straightforwardly derived from the central limit theorem (CLT) for

maximum composite likelihood estimators.

Za =
â− a√
Gaa(ϑ̂u)

D−→ N{0, 1}, (4.3)

where Gaa(ϑ̂u) denotes a 1× 1 submatrix of the inverse of G(ϑ̂u) pertaining to a.

Remark 4.1 Traditional methods for deriving hypothesis tests at boundary points H0 : a = 1 (AD)

or H0 : a = 0 (AI) do not work in this situation due to the presence of additional nuisance parameters

which are not identified under the null hypotheses. This problem has been introduced in several studies

for various situations, see, e.g. [13, 14]. In that case, still, much more theoretical research has to be

undertaken to determine the limiting distribution. Therefore, we apply our LRa test at points close

to the boundaries, i.e., a0 = 0.99 or a0 = 0.01.

5. SIMULATION STUDY

This section studies the performance of our proposed test statistics LRa and Za via several simulation

studies. We consider testing H0 : a = a0 against H1 : a 6= a0, where a0 varies from 0.01 to 0.99 by

steps of 0.01.

Throughout this section, we consider the following MM model

• MM: is a MM model (2.13) in which X is a TEG process (see Table 1) with AX a disk of fixed

radius rX and isotopic exponential correlation function ρX(h) = exp{−‖h‖/φX}, for some range

parameter φX > 0. The AI process Y is an inverted TEG process with AY a disk of fixed radius

rY and isotopic correlation function ρY (h) = exp{−‖h‖/φY }, φY > 0. Note that we call range

the distance beyond which it is considered the correlation cancels out.

By this construction of the model MM, the pairs of sites separated by a distance ‖h‖ smaller than

2rX or greater than 2rY are asymptotically dependent or exactly independent, respectively. Whereas,

at intermediate distances the pairs exhibit AI.

Note that for the MS TEG process X (see Table 1), the short-range dependence is largely determined

by the correlation function ρ(h), while the longer-range dependence is regulated by the geometry of

the random set A. For the sake of simplicity, we may consider A as a disk with fixed radius r. With

this choice the expected volume of overlap between the random set A and A+h can be approximated

by α(h) ' (1− ‖h‖/2r)11[0,2r]. In such a case, χ(h) = 0, ‖h‖ ≥ 2r. In other words, the process X is

exactly independent for all ‖h‖ ≥ 2r. For more details, see [16].
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5.1. Estimation performance

The censored pairwise likelihood approach (3.2) is used for estimation, where the threshold u is taken

corresponding to the 0.9 empirical quantile at each site. Equal weights ωij are considered. Indeed,

choosing equal weights in the pairwise likelihood may not be ideal both in terms of computational

efficiency and statistical efficiency, see [6]. In order to obtain the estimates of H(ϑ) and J (ϑ) in the

Monte Carlo procedure (3.3) and (3.4), we use M = 1500 as a compromise between accuracy and

computation time. Furthermore, to reduce computational burden the pairwise likelihood function has

been coded in C; the optimization has been parallelized on 20 cores using the R library parallel and

carried out using the Nelder-Mead optimization routine in R.

To assess the quality of the censored pairwise likelihood estimation procedure, a simulation study

has been carried out. We simulate T = 1000 independent copies of the model MM at D = 50 sites

randomly and uniformly distributed in the square [0, 3]2. We consider several mixing parameters

a ∈ {0, 0.25, 0, 50, 0.75 and 1}. The parameters used are φX = 0.10, rX = 0.25, φY = 0.75, rY = 1.20.

Each experiment was repeated J = 200 times to obtain boxplots of the estimated parameters and

compute performance metrics, i.e., the mean estimate, the root mean squared error (RMSE), and the

mean absolute error (MAE). Denote by ϑ̂j the jth estimation, then

RMSE =

J−1 J∑
j=1

(ϑ̂j − ϑ)2

1/2

and MAE = J−1
J∑
j=1

|ϑ̂j − ϑ| (5.1)

The boxplots of the errors of the estimated parameters on the J samples are displayed in Figure 2.

Table 2 reports the mean estimate, RMSE, and MAE of the estimated parameters. Generally, the

estimation procedure appears to work well although the variability of some estimates were relatively

large, especially for the AI parameters {φY , rY }. This probably stems from the fact that asymptotic

independence is difficult to estimate [15]. Moreover, we observe that contrary to AI parameters

{φY , rY }, the estimation of AD parameters {φX , rX} becomes more accurate as the mixing parameter

value increases (the RMSE and MAE are lower). Using (3.5) instead of (3.2) as censored pairwise

likelihood leads to similar results (see Appendix A).

5.2. Testing performance with true a being a non-boundary point in (0, 1)

We evaluate the performance of the proposed pairwise likelihood test statistics (4.2) and (4.3). We test

whether the null hypothesis H0 : a = a0 holds for all a0 values in the set {0.01, 0.02, . . . , 0.99}. Here we

examine three cases with a true mixing parameter a ∈ {0.25, 0.5, 0.75}, based on J = 150 simulation

replicates from T = 1000 independent copies simulated at D = 50 randomly and uniformaly sampled

locations in the square [0, 3]2 from the model MM with parameters {φX = 0.10, rX = 0.25, φY =

0.75, and rY = 1.2}. We compute the empirical probabilities of rejecting H0 which we denote by P. In

other words, P represents the power of the test when H0 is false (i.e. the proportion of null hypotheses

rejected). Decisions obtained at three significance levels α ∈ {0.01, 0.05, 0.10}.
For both statistics LRa and Za, our results are summarized in Figure 3 and Table 3. Overall, the

results show a reasonable performance for the two statistics. In particular, both tests seem to be

unbiaised (the power is greater than the sensitivity level α). Moreover, the type I errors (probability
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Figure 2: Boxplots display ϑ̂ − ϑ of the estimated parameters using censored pairwise likelihood

approach (3.2) based on 200 simulation replicates from 1000 independent copies of the model

MM with parameters φX = 0.10, rX = 0.25, φY = 0.75, rY = 1.20, and mixture parameter

a ∈ {0, 0.25, 0.5, 0.75, 1}. Blue dotted/red horizontal lines show the estimated errors means/0 value.

of rejecting H0 when H0 holds true) are close to the nominal level size α = 0.01, 0.05, 0.1. The LRa

test seems to be more powerful than the Za one as can be seen on Table 3.

5.3. Testing performance with true a being a boundary point (i.e., a = 0 or a = 1)

The censored pairwise likelihood ratio test statistics LRa cannot be applied directly for testing H0 :

a = a0 with a0 being the boundary point (i.e., a0 = 0 or a0 = 1) since there are additional nuisance

parameters which are present only under the alternative hypothesis H1. Thus, we apply our statistics

at some points very close to the boundaries, i.e., a0 = 0.01 or a0 = 0.99.

For this purpose, we simulate T = 1000 independent observations of a TEG process (AD case)(resp.

an inverted TEG process (AI case)) with parameters {φX = 0.10, rX = 0.25} (resp. {φY = 0.75, rY =

1.2}) at D = 50 sites uniformly generated in [0, 3]2. We repeat this experiment J = 150 times. For

both cases, we test whether the null hypothesis H0 : a = a0 holds, where a0 varies from 0.01 to 0.99

by steps of 0.01. Here, the MM model that mixes both processes (TEG and inverted TEG) is used to
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Performance metrics

True Mean RMSE MAE

estimate

a = 0 0.031 0.043 0.031

φY = 0.75 0.731 0.092 0.072

rY = 1.2 1.183 0.095 0.073

φX = 0.1 0.121 0.064 0.053

rX = 0.25 0.269 0.053 0.039

a = 0.25 0.261 0.037 0.029

φY = 0.75 0.782 0.115 0.088

rY = 1.2 1.229 0.125 0.091

φX = 0.1 0.115 0.058 0.044

rX = 0.25 0.257 0.036 0.028

a = 0.5 0.529 0.043 0.032

φY = 0.75 0.789 0.143 0.105

rY = 1.2 1.183 0.168 0.126

φX = 0.1 0.111 0.030 0.023

rX = 0.25 0.255 0.027 0.021

a = 0.75 0.751 0.029 0.020

φY = 0.75 0.812 0.186 0.144

rY = 1.2 1.213 0.203 0.153

φX = 0.1 0.093 0.018 0.014

rX = 0.25 0.231 0.024 0.017

a = 1 0.951 0.053 0.049

Table 2: Performance of the estimation for 200 simulated MM models with parameters φX =

0.10, rX = 0.25, φY = 0.75, rY = 1.20, and several mixing coefficient a ∈ {0, 0.25, 0.5, 0.75, 1}. The

mean estimate, RMSE, and MAE of the estimated paramters.

perform testing for each step on the basis of the simulated data from TEG (AD case) and inverted

TEG (AI case). Similarly as before, the empirical probabilities (P) are computed for both cases.

Decisions are obtained at three significance levels α ∈ {0.01, 0.05, 0.10}.
Figure 4 and Table 4 compare the empirical probabilities (P) obtained for both statistics LRa and Za.

We note that the performance of the two statistics is satisfactory. As expected, the power to reject

asymptotic dependence, i.e., H0 : a = 1 (resp. asymptotic independence, i.e., H0 : a = 0) improves

as a → 0 (resp. a → 1). Moreover, we observe that the P values at a0 close to the boundaries,

i.e., a0 = 0.01 or a0 = 0.99 are close to the nominal level size α = 0.01, 0.05, 0.1. Therefore, these

pairwise likelihood statistics can control the type I error rate α. So, these statistics can provide a

strong indication for both AD and AI. Let us remark that near the boudaries (a = 0 or a = 1), the

LRa test seems to be less powerful than the Za one (contrary to what we observed for a away from

the boundaries).
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Figure 3: Empirical probabilities (P) based on 150 replicates simulation study of the model MM

with φX = 0.10, rX = 0.25, φY = 0.75, rY = 1.20. The mixing coefficients (top row: a = 0.25, middle

row: a = 0.50 and bottom row: a = 0.75). (Solid line: Za test and dashed line: LRa test). Horizontal

red dotted lines show the nominal level size α = 0.1, 0.05, 0.01.

6. RAINFALL DATA EXAMPLE

Below we discuss a spatial application to illustrate the practical utility of our testing approach. We

analyze daily precipitation data collected over the East of Australia.

6.1. Data

The dataset analyzed in this section is composed of daily rainfall measurements (in millimetres)

recorded from 1972 to 2014 at 38 monitoring stations on the East of Australia whose locations are

shown in Figure 5. Only the winter period (April-September) is considered. The altitude of the stations

varying from 4 to 552 meters above mean sea level. The stations are separated by distances ranging

from 34 km to 1383 km. This dataset is freely available on http://www.bom.gov.au/climate/data/.

More details about data and monitoring stations are in the Supplementary Material, see Appendix B.
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True a = 0.25

α = 0.01 α = 0.05 α = 0.1

a0 LRa Za LRa Za LRa Za

0.05 0.960 0.867 0.980 0.993 0.993 0.953

0.10 0.653 0.527 0.833 0.807 0.913 0.900

0.15 0.327 0.160 0.467 0.393 0.587 0.540

0.20 0.093 0.053 0.100 0.113 0.213 0.153

0.25 0.013 0.000 0.040 0.053 0.093 0.087

0.30 0.033 0.020 0.080 0.060 0.173 0.113

0.35 0.127 0.073 0.327 0.400 0.487 0.627

0.40 0.460 0.633 0.820 0.907 0.873 0.960

0.50 0.987 0.973 0.987 0.980 0.987 0.993

0.80 0.993 0.993 0.993 0.993 0.993 1.000

True a = 0.5

α = 0.01 α = 0.05 α = 0.1

a0 LRa Za LRa Za LRa Za

0.10 0.993 0.967 1.000 0.980 1.000 0.980

0.25 0.973 0.953 0.980 0.967 0.993 0.967

0.35 0.727 0.833 0.913 0.907 0.947 0.940

0.40 0.333 0.387 0.647 0.593 0.707 0.773

0.45 0.073 0.147 0.213 0.273 0.273 0.307

0.50 0.020 0.027 0.047 0.067 0.107 0.080

0.55 0.087 0.127 0.280 0.360 0.413 0.487

0.60 0.560 0.660 0.673 0.813 0.780 0.867

0.65 0.887 0.920 0.960 0.933 0.973 0.947

0.75 0.973 0.960 1.000 0.960 1.000 0.973

True a = 0.75

α = 0.01 α = 0.05 α = 0.1

a0 LRa Za LRa Za LRa Za

0.40 0.987 0.960 0.993 1.000 0.993 1.000

0.50 0.973 0.953 0.980 0.967 0.993 0.980

0.60 0.733 0.700 0.927 0.893 0.967 0.933

0.65 0.260 0.193 0.547 0.520 0.713 0.653

0.70 0.060 0.040 0.140 0.093 0.240 0.187

0.75 0.013 0.007 0.067 0.060 0.113 0.107

0.80 0.187 0.133 0.313 0.220 0.367 0.293

0.85 0.547 0.373 0.787 0.607 0.913 0.680

0.90 0.913 0.767 0.953 0.860 0.980 0.907

0.95 0.980 0.920 1.000 0.973 1.000 0.993

Table 3: Empirical probabilities (P) for testing H0 : a = a0 against H1 : a 6= a0 based on 150 simu-

lation replicates from 1000 independent copies of the model MM with parameters φX = 0.10, , rX =

0.25, φY = 0.75, rY = 1.2 and mixing coefficients a ∈ {0.25, 0.5, 0.75} at three significance levels

α ∈ {0.01, 0.05, 0.10}.

6.2. Exploratory analysis

For given data, it might be important to check whether the extremes in space have directional depen-

dence. So, a graphical test based on the empirical versions of χu(h) (2.7) and χ̄u(h) (2.8) is used to
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Figure 4: Top row: empirical probabilities (P) for testing H0 : a = 0 (AI case) based on 150

simulation replicates from 1000 independent copies from an inverted TEG process with parameters

{φY = 0.75, rY = 1.2}). Bottom row: empirical probabilities (P) for testing H0 : a = 1 (AD case)

based on 150 simulation replicates from 1000 independent copies from a TEG process with parameters

{φX = 0.1, rX = 0.25}). (Solid line: Za test and dashed line: LRa test). Horizontal red dotted lines

show the nominal level size α = 0.1, 0.05, 0.01.

True a = 0

α = 0.01 α = 0.05 α = 0.1

a0 LRa Za LRa Za LRa Za

0.01 0.020 0.033 0.053 0.040 0.127 0.113

0.05 0.053 0.073 0.140 0.100 0.193 0.187

0.10 0.133 0.160 0.233 0.207 0.273 0.247

0.20 0.333 0.413 0.420 0.453 0.567 0.647

0.30 0.507 0.620 0.587 0.740 0.727 0.800

0.40 0.667 0.793 0.820 0.873 0.907 0.893

0.50 0.833 0.880 0.933 0.940 0.960 0.967

0.60 0.933 0.973 0.980 0.987 1.000 0.993

True a = 1

α = 0.01 α = 0.05 α = 0.1

a0 LRa Za LRa Za LRa Za

0.30 0.993 1.000 1.000 1.000 1.000 1.000

0.40 0.927 0.987 0.973 0.993 0.933 1.000

0.50 0.807 0.893 0.907 0.920 0.960 0.987

0.60 0.667 0.727 0.693 0.753 0.853 0.887

0.70 0.480 0.553 0.467 0.527 0.680 0.733

0.80 0.260 0.313 0.293 0.353 0.447 0.493

0.90 0.120 0.133 0.147 0.173 0.220 0.267

0.95 0.033 0.047 0.073 0.107 0.167 0.213

0.99 0.000 0.027 0.047 0.080 0.087 0.133

Table 4: Empirical probabilities (P) for testingH0 : a = a0 againstH1 : a 6= a0 based on 150 simulation

replicates from 1000 independent copies of an inverted TEG process (true a = 0) with parameters

{φY = 0.75, rY = 1.2} and a TEG process (true a = 1) with parameters {φX = 0.10, rX = 0.25}.
Significance levels α ∈ {0.01, 0.05, 0.10}.

explore possible anisotropy of the spatial dependence. Consider Zt, t = 1, . . . , T , T copies of a MM

process Z with unit Fréchet margin F . It is easy to compute the empirical estimates of χu(h) and
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Figure 5: Geographical locations of the 38 meteorological stations located in the East of Australia.

Black/Red crosses show the stations in A/B zones. Stations in zone A are used for model inference,

and the other stations in zone B are put aside for hypothesis testing.

χ̄u(h) from the empirical univariate and bivariate distributions as follows

χ̂u(h) = 2−
log
(
T−1

∑T
t=1 11{Ut(s)<u,Ut(s+h)<u}

)
log
(
T−1

∑T
t=1 11{Ut(s)<u}

) , s, s+ h ∈ S, (6.1)

̂̄χu(h) =
2 log

(
T−1

∑T
t=1 11{Ut(s)>u}

)
log
(
T−1

∑T
t=1 11{Ut(s)>u,Ut(s+h)>u}

) − 1, s, s+ h ∈ S, (6.2)

where Ut = F (Zt).

Remark 6.1 When dealing with real data, the marginal laws are usually not unit Fréchet and thus

have to be transformed to unit Fréchet margins according to the probability integral transform: x →
−1

log(F̂ (x))
, with F̂ (.) either the empirical distribution function or the estimated generalized extreme

value distribution GEVµ̂(s),σ̂(s),ξ̂(s)(.) (2.2).

We divide the dataset according to different directional sectors;

(−π/8, π/8], (π/8, 3π/8], (3π/8, 5π/8], and (5π/8, 7π/8], where 0 represents the northing direction.

On the basis of observed data, we construct the empirical estimates χ̂u(h) and ̂̄χu(h). Figure 6

displays the directional loess smoothing of the empirical estimates χ̂u(h) and ̂̄χu(h) at u = 0.97 with

respect to h. Based on these estimates there is no clear evidence of anisotropy. On the other hand,

as mentioned in Sect. 2.2., the empirical estimates of χu(h) and χ̄u(h) can be useful in distinguishing

between AD and AI. By means of visual inspection, Figure 6 provides an indication that AD between

stations seems to be present up to a distance of 500 km, where χ̂0.97(h) > 0 for h ≤ 500 km, whereas

AI appears could be conjectured between 500 km and 1000 km, where ̂̄χ0.97(h) < 1 for h ∈ [500, 1000]

km. Moreover, the pairs of sites separated by a distance h > 1000 km are (exactly) independent aŝ̄χ0.97(h) ' 0 for h > 1000 km. Hence, a MM model sounds a strong candidate for quantifying the

extreme dependence structure in this rainfall dataset.
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Figure 6: Pairwise empirical estimates of χ (left panel) and χ̄ (right panel) versus distance at

threshold u = 0.970. Grey points are empirical pairwise estimates for all data pairs. Colored lines

are the loess smoothed values of the empirical estimates in different directional sectors: black line

(−π/8, π/8], red line (π/8, 3π/8], blue line (3π/8, 5π/8], and green line (5π/8, 7π/8].

6.3. Testing procedure

The two statistics LRa and Za have emerged as an efficient tools for testing hypothesis on the mixing

parameter of spatial MM models by the simulation study. We now describe a testing procedure for the

mixing parameter of a MM process Z (2.13) based on the observed rainfall dataset. As the proposed

tests are model-based approaches which means that the distribution family has to be specified prior

to perform the tests. Hence, we divide the daily rainfall dataset from the 38 sites into two zones;

A and B (see Figure 5). The 19 sites in zone A are used for model inference and the other sites in

zone B are put aside for testing. Therefore, we analyze the daily rainfall data from zone A using the

censored pairwise approach (3.2), where the threshold u is taken as the 0.9 empirical quantile at each

site. Equal weights are assumed. For this purpose, we shall consider nine models which belong to

the three classes: M1 −M3 are flexible MM models, M4 −M6 are MS models, and M7 −M9 are

Inverted MS models.

• M1: a MM (2.13) model where X is a TEG process with an exponential correlation function

ρX(h) = exp(−‖h‖/φX), φX > 0. AX is a disk of fixed and unknown radius rX , and Y is an

inverted TEG process with exponential correlation function ρY (h) = exp(−‖h‖/φY ), φY > 0,

and AY is a disk with fixed and unknown radius rY .

• M2: a MM model where X is a TEG process with correlation function of type powered expo-

nential defined by ρ(h) = exp[−(‖h‖/φX)κX ], φX > 0 and 0 < κX < 2, where φX and κX are

the range and the smoothing parameters, respectively. Y is an isotropic inverted BR process

with a spherical semivariogram model

γY (h) =

αY {1.5(‖h‖/φY )− 0.5(‖h‖/φY )3} , ‖h‖ ≤ φY
αY , ‖h‖ > φY ,
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where φY > 0 is the range and αY > 0 denotes the sill; the value that the semivariogram model

attains at the range.

• M3: a MM model where X is a TEG process as in M1. Y is an isotropic inverted Smith process

with a diagonal covariance matrix ΣY = φY I2, I2 is 2× 2 identity matrix.

• M4: a MS TEG process described as X in M1.

• M5: a MS isotropic BR process with a spherical semivariogram model

γX(h) =

αX{1.5(‖h‖/φX)− 0.5(‖h‖/φX)3} , ‖h‖ ≤ φX
αX , ‖h‖ > φX .

• M6: a MS isotropic Smith process with ΣX = φXI2.

• M7: an inverted TEG process described as Y in M1.

• M8: an inverted BR process described as Y in M2.

• M9: an inverted Smith process described as Y in M3.

We fit the GEVµ(s),σ(s),ξ(s)(x) (2.2) separately to each site. Then data are transformed to unit Fréchet

margins through the transformation x → −1
log(F̂ (x))

, where F̂ (.) is the estimated GEV cumulative

distribution function. The CLIC criterion [45], defined as CLIC= −2[p`(ϑ̂) − tr{J (ϑ̂)H−1(ϑ̂)}] is

used to choose the best fitted model. Lower values of CLIC indicate a better fit. The matrices

H(ϑ) and J (ϑ) and the related quantities (CLIC and standard errors) are obtained by Monte Carlo

procedure (3.3) and (3.4) through simulating data with M = 1500 independent draws from the fitted

model.

Our results are summarized in Table 5. The best-fitting model for zone A, as judged by CLIC, is

the hybrid dependence model M2, for which pairs of sites separated by a distance ‖h‖ smaller than

2r̂X ' 720 km are exactly MS independent. While, the dependence structure is characterized by the

AI part of this model for pairs separated by a distance ‖h‖ greater than 720 km.

Lastly, we consider the best-fitting model in zone A (M2), we perform the proposed statistical

tests LRa and Za to examine whether model M2 can be an appropriate model to quantify the

extremal dependence structures for rainfall data in zone B as in zone A. Simply, on the basis of

observed data in zone B, we want to test whether the null hypothesis H0 : a = a0 holds for

a0 ∈ {0.01, 0.1, 0.2, 0.3, 0.39, 0.5, 0.6, 0.99}. To assess the validity of our results, the corresponding

CLIC under the null hypothesis is computed. Our results are summarized in Table 6. In summary,

both statistics retain the null hypothesis H0 : a = 0.39. Moreover, we observe the agreement between

the test findings and CLIC values. Thus, the MM model M2 can be used to model the dependence

structures of daily precipitation in both zones A and B. These conclusions seem to be reasonable and

could be expected, since both studied zones are located in the east coast of Australia and may have a

homogeneous precipitation patterns. Similar data have also been used in [2], where the authors also

concluded that winter rainfall in this region is homogeneous.
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Table 5: Parameter estimates of selected dependence models fitted to the daily rainfall data at zone

A. The CLIC criterion and standard errors reported between parentheses. (*) indicates to the lower

CLIC.
Model φ̂X κX r̂X â φ̂Y r̂Y α̂Y CLIC

M1 342.87 - 713.08 ' 1 2235.51 986.40 - 1952371

(58.39) - (210.74) (0.03) (498.65) (271.34) - -

M2 206.22 1.93 361.71 0.39 1014.54 - 2.46 1952188∗

(81.17) (1.04) (199.62) (0.11) (306.55) - (1.24) -

M3 32.19 - 108.55 0.28 1154.96 - - 1952402

(13.76) - (70.02) (0.16) (217.88) - - -

Model φ̂X r̂X α̂X CLIC

M4 311.92 761.84 - 1952378

(68.52) (189.10) - -

M5 422.89 - 4.77 1952266

(78.29) - (2.93) -

M6 189.59 - - 1960850

(41.66) - - -

Model φ̂Y r̂Y α̂Y CLIC

M7 18.05 707.12 - 1960726

(6.81) (115.41) - -

M8 533.04 - 5.63 1952411

(88.15) - (2.27) -

M9 316.63 - - 1963215

(207.85) - - -

Equivalently, an independent two-samples Z-test is performed to compare the mixture parameter in

both zones. Denote by aA (resp. aB the mixing parameter for the best-fitting model in zone A (resp.

zone B). We want to test whether the null hypothesis H0 : aA = aB holds, the statistic

Z∗a =
âA − âB
SEâA−âB

, (6.3)

where SE stands for the estimated standard error (we found |Z∗a | = 0.42, and p-value = 0.67, α =

0.05). Similarly, we conclude that there is no significant difference between the mixing parameters in

both zones.

By the above testing scheme, our statistics LRa and Za appear to play as an efficient parametric

approach for model validation. The latter conclusion can be a big advantage for our testing scheme

since the reason for fitting a statistical model to data is to make conclusions about some aspect of

the population from which the data were drawn. Such conclusions can be sensitive to the accuracy

of the fitted model, so it is necessary to check that the model fits well, especially, in the context of

spatial extremes processes such as heavy precipitation, heat waves and windstorms, since when mod-

eling dependence for these processes, imposing a specific type of asymptotic behaviour has important

consequences on the estimation of return levels for spatial functionals.
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LRa |Za|
a0 statistic p-value statistic p-value CLIC

0.01 16.07 6.10×10−5 4.42 9.87×10−6 2085837

0.10 10.98 9.21×10−4 3.63 2.83×10−4 1980814

0.20 9.53 2.02×10−3 2.75 5.96×10−3 1955458

0.30 6.34 1.18×10−2 2.19 2.85×10−2 1952356

0.39 1.21 2.71 ×10−1 0.92 3.58×10−1 1952194

0.50 3.78 5.18×10−2 1.83 6.72×10−2 1952227

0.60 10.14 1.45×10−3 2.68 7.36×10−3 1957503

0.99 21.46 3.61×10−6 4.69 2.73×10−6 2213019

Table 6: Testing results of the null hypothesis H0 : a = a0, with a0 ∈
{0.01, 0.1, 0.2, 0.3, 0.39, 0.5, 0.6, 0.99} on the basis of observed data in zone B. α = 0.05. The cor-

responding CLIC values under H0 are reported.

7. CONCLUDING REMARKS

In summary, we have considered hypothesis testing for the mixture parameter of a MM models using

two statistics the Za and LRa. A censored pairwise likelihood is employed for inferential purposes,

since composite marginal likelihood appears to be an attractive alternative for modeling complex data,

and has received increasing attention in handling high dimensional datasets when the joint distribution

is computationally difficult to evaluate, or intractable due to complex structure of dependence, like in

MS and MM models.

A simulation study has shown that both statistics perform well, even when we have considered testing

at values that are very close to the boundary points. These tests can control the type I error rate

α and they seem to be unbiased. The LRa test seem to be more powerful than the Za one, for a

away from the boundaries, while for a ∈ {0, 1}, the contrary seems to hold. We show by the real data

example that our testing procedure could be a performant model validation tool. Also, we find that

MM model appears of interest for modeling environmental data since it can handle both AD and AI.

Of course, still, much more research both from theoretical and practical point of view has to be done,

for testing at boundary points (i.e., a0 = 1 (AD) or a0 = 0 (AI)). The LR statistic could also be

useful when comparing nested models. For instance, testing whether it is more appropriate to use a

powered exponential correlation function ρ(h) = exp{−(‖h‖/φ)κ}, for φ > 0 and 0 < κ < 2, or an

exponential correlation function ρ(h) = exp(−‖h‖/φ) in spatial TEG model, more precisely, testing

the hypothesis H0 : κ = 1 versus H0 : κ 6= 1. The ideas sketched in this paper provides initial steps

toward testing of hypotheses related to spatial rare events. Our future work will be dedicated to

investigate the above-mentioned issues.
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8. APPENDIX

APPENDIX A

Estimation using censored pairwise likelihood approach (3.5).
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Figure 7: Boxplots display ϑ̂ − ϑ of the estimated parameters using censored pairwise likelihood

approach (3.5) based on 100 simulation replicates from 1000 independent copies of the model MM with

parameters φX = 0.10, rX = 0.25, φY = 0.75, rY = 1.20, and mixture parameter a ∈ {0, 0.3, 0.7, 1}.
Blue dotted/red horizontal lines show the estimated errors means/0 value.

APPENDIX B

Supplementary material

The rainfall dataset used in (Sect. 6.) is included as an electronic supplementary material on the

website:

http://math.univ-lyon1.fr/homes-www/abuawwad/Rainfalldataset/.
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Figure 8: Barplots display RMSE of ϑ̂ = {φ̂X , r̂X , â, φ̂Y , r̂Y } for each estimated parameter using

censored pairwise likelihood approach (3.5) based on 100 simulation replicates from 1000 independent

copies of the model MM with parameters φX = 0.10, rX = 0.25, φY = 0.75, rY = 1.20, and mixture

parameter a ∈ {0, 0.3, 0.7, 1}.
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